
3 TP INFO 4 Initiation à la programmation récursive

On expose les fondements de la programmation récursive, ses avantages et ses in-
convénients en les illustrant au moyen des algorithmes classiques.

4 Initiation à la programmation récursive . 1
1 Introduction . 2
2 Fonctions récursives . 2

2.1 Exemples classiques . 3
2.2 Déroulemement d’un appel récursif . 4

3 Exercices . 6
4 Indications . 11

2025-2026 Laurent Kaczmarek

1. Introduction

Le mot récursivité vient de la racine latine currere, « courir ». L’idée est de revenir en arrière, on la re-
trouve également dans le vocabulaire judiciaire (recours). En première approche, on peut considérer
la récursivité comme une version informatique de la récurrence.

Par exemple, pour calculer n! en n’utilisant que la multiplication, on peut utiliser :

Un traitement itératif :

on calcule 1, 1×2 puis (1×2)×3, etc. jusqu’à (1×2×·· ·× (n −1))×n

La relation de récurrence n! = n × (n −1)! et son initialisation 0! = 1 :{
si n ̸= 0, alors on calcule (n −1)! et on multiplie le résultat par n.

Si n = 0, alors on renvoie 1.

La plupart des langages de programmation offrent la possibilité de coder naturellement cette récur-
rence

Cela donne les programmes suivants en Python :

def factIt (n):
p=1
for i in range (2,n+1):

p=p*i
return p

def factRec (n):
if n==0:

return 1
else:

return n* factRec (n -1)

La fonction factRec est dite récursive et s’utilise, comme toute autre fonction, au moyen d’un appel :

>>> factIt (5)
120
>>> factIt (1)
1

>>> factIt (0)
1
>>> factRec (0)
1

>>> factRec (1)
1
>>> factRec (5)
120

La notion actuelle de fonction récursive a ses origines dans les travaux sur la calculabilité de Skolem,
Gödel et Kleene dans les années 1920-1940.

2. Fonctions récursives

Nous n’entrerons dans aucun développement de logique formelle concernant la calculabilité et nous
contenterons de la « définition » suivante :

LLG . HX 6 2

2025-2026 Laurent Kaczmarek

Définition 4.0. Fonction récursive

Une fonction récursive est une fonction faisant appel à elle-même.

Afin que la série des appels récursifs ne soit pas infinie, il convient d’identifier un ou plusieurs cas
pour lesquels aucun appel récursif ne sera effectué. Dans le cas de la fonction factRec, il s’agit du cas
où n = 0 qui correspond à une initialisation. On les appelle cas de base de la fonction récursive.

2.1. Exemples classiques

Très naturelle dans certains contextes (calcul des termes d’une suite récurrente par exemple), la ré-
cursivité est parfois plus subtile à mettre en place.

Récurrences d’ordre un.

Considérons par exemple la suite définie par u0 = 1 et un+1 = sinun pour tout n ∈N.

def u(n):
if n==0:

return 1
else:

return sin(u(n -1))

Ici, le cas de base est simple (il s’agit de
la condition initiale) et l’on effectue un
unique appel récursif.

>>> u(10)
0.46295789853781183

Il est possible d’effectuer plus d’un appel récursif dans la fonction.

Récurrences d’ordre deux et plus.

Prenons l’inusable exemple de la suite de Fibonacci (fn)n⩾0.

def fib(n):
if n <=1:

return n
else:

return fib(n -1)+ fib(n -2)

Les cas de base sont évidents (les conditions
initiales) et l’on effectue deux appels récur-
sifs.

>>> fib (10)
55

Nous avons déjà vu en TP un algorithme naturellement récursif : la recherche dichotomique dans
une liste triée. Pour déterminer si un nombre x appartient à une liste triée numérique t dans l’ordre
croissant, on la coupe en deux en son milieu t [m] et, selon la position relative de t [m] et x, on
renvoie True ou bien l’on recommence avec une des deux « moitiés » de t .

-3 0 1 4 5 7 9

-3 0 1

5 7 9

x ∈ ?
Si x < 4, x ∈ ?

Si x > 4, x ∈

Si x = 4, renvoyer True

?

LLG . HX 6 3

2025-2026 Laurent Kaczmarek

On utilise le slicing afin de « construire » les portions de liste de l’algorithme dichotomique. Le cas
de base peut être celui où t est vide ou bien réduit à un élément (valable si on n’applique pas la
fonction à une liste vide).

def biSearchRec (t,x):
if len(t)==0:

return False
else:

m=(len(t) -1)//2
if x==t[m]:

return True
elif x>t[m]:

return biSearchRec (t[m+1:] ,x)
else:

return biSearchRec (t[:m],x)

2.2. Déroulemement d’un appel récursif

Quant on appelle une fonction récursive, cette dernière est en fait appelée à plusieurs reprises. Pour
gérer un programme où plusieurs fonctions sont appelées, l’interpréteur utilise une pile d’exécution.
Il y emmagasine des valeurs et des adresses permettant de garder la trace de l’endroit où chaque
fonction active 1 doit retourner à la fin de son exécution.

Reprenons l’exemple de la fonction factRec de
l’introduction (cf. 2). Considérons l’appel fac-
tRec(5). Avant de renvoyer quoi que ce soit, il
engendre un appel factRec(4) qui lui-même en-
gendre un nouvel appel factRec(3) et ainsi de
suite jusqu’à l’appel de factRec(0).

Les appels sont imbriqués les uns dans les autres
comme des poupées russes.

Appel factRec(5)

Appel factRec(4)

Appel factRec(3)

Appel factRec(2)

Appel factRec(1)

Appel factRec(0)

Visualisons cela au moyen de la pile d’exécution :

Empilement des appels

factRec(5) factRec(5)

factRec(4)

factRec(5)

factRec(4)

factRec(3)

factRec(5)

factRec(4)

factRec(3)

factRec(2)

factRec(5)

factRec(4)

factRec(3)

factRec(2)

factRec(1)

factRec(5)

factRec(4)

factRec(3)

factRec(2)

factRec(1)

factRec(0)

L’appel factRec(0) n’engendre aucun nouvel appel et se solde par le renvoi de 1 dans l’appel fac-
tRec(1), qui renvoie 1×1 dans l’appel factRec(2), qui renvoie 2×1 = 2 dans l’appel factRec(3),

1. Les fonctions actives sont celles qui ont été appelées, mais n’ont pas encore terminé leur exécution.

LLG . HX 6 4

2025-2026 Laurent Kaczmarek

qui renvoie 3× 2 = 6 dans l’appel factRec(4), qui renvoie 4× 6 = 24 dans l’appel factRec(5) qui
renvoie 5×24 = 120.

Dépilement des retours

factRec(5)

factRec(4)

factRec(3)

factRec(2)

factRec(1)

Renvoie 1

factRec(5)

factRec(4)

factRec(3)

factRec(2)

Renvoie 1

factRec(5)

factRec(4)

factRec(3)

Renvoie 2

factRec(5)

factRec(4)

Renvoie 6

factRec(5)

Renvoie 24

Renvoie 120

La taille de la pile est bien-sûr limitée par la mémoire finie de l’ordinateur. En Python, la taille de
la pile est limitée par défaut à 1000, ce qui est vite atteint en cas d’appels récursifs multiples dans
la définition de la fonction. Il est cependant possible d’augmenter sa taille pour les besoins d’une
exécution 2.
Dans le cas où la fonction compte plus
d’un appel récursif, il est intéressant
de représenter les appels au moyen
d’un arbre.

Revenons à la fonction fib calculant
les termes de la suite de fibonacci (cf.
page 3). L’appel fib(5) peut se résu-
mer par l’arbre ci-contre. On y voit en
particulier l’inflation du nombre d’ap-
pels. Par exemple, fib(2) est calculé
trois fois.

fib(5)

fib(4)

fib(3)
fib(2)

fib(1)

fib(1)

fib(0)

fib(2)
fib(1)

fib(0)

fib(3)
fib(2)

fib(1)

fib(0)

fib(1)

Il faut donc éviter d’utiliser la fonction récursive fib, donnée dans le paragraphe d’exemples, pour
calculer les termes de la suite de Fibonacci : pour valeurs petites de n, le temps de calcul sera bien
trop long.

On retiendra les deux conseils suivants :

STOP Écueils de la récursivité et recommandations

On évitera des appels récursifs multiples sur les mêmes variables (cf. l’exempe de Fibonacci).

On identifiera clairement les cas de base de la fonction récursive : il faut s’assurer que tout appel
récursif aboutira à l’un d’entre eux.

2. En utilisant la fonction setrecursionlimit du module sys

LLG . HX 6 5

2025-2026 Laurent Kaczmarek

3. Exercices

1 � 4 Suite de Prouhet-Thue-Morse

On définit la suite (tn) par t0 = 0, ∀n ∈N,

{
t2n = tn

t2n+1 = 1− tn

Écrire une fonction récursive ptm(n) renvoyant tn pour tout n ∈N.

2 � 4 Algorithmes d’exponentiation

La seconde méthode est connue sous le nom d’exponentiation rapide.

1. Écrire une fonction récursive expo(a,n) renvoyant an pour a ∈Z et n ∈N.

2. Pour un réel positif a et un entier n, on remarque que an =


(
a

n
2

)2
si n est pair

a
(
a

n−1
2

)2
si n est impair

En déduire une nouvelle fonction récursive quickExpo(a,n) renvoyant an pour a ∈Z et n ∈N.

3 � 4 Retour à Fibonacci : amélioration par vectorialisation f

On considère la suite de Fibonacci :

f0 = 0, f1 = 1, ∀n ∈N, fn+2 = fn+1 + fn

Nous avons vu dans le cours qu’une fonction avec deux appels récursifs souffrait d’un temps de cal-
cul trop long par rapport à une version itérative. Nous allons voir comment remédier à cet écueil en
revenant à un seul appel récursif.

1. On pose Xn = (fn , fn+1) pour tout n ∈N. Déterminer une fonction φ :R2 →R2 telle que

∀n ∈N , Xn+1 =φ(Xn)

2. En déduire une fonction récursive X prenant en argument un entier n et renvoyant Xn sous la
forme d’une liste.

4 � 4 Coefficients binomiaux f

On étudie différents algorithmes récursifs de calcul des coefficient

(
n

k

)
. On renverra un résultat du

type int.

1. Écrire une fonction récursive binome1(n,k) exploitant la relation de Pascal.

2. En remarquant que

(
n

k

)
= n

k

(
n −1

k −1

)
, écrire une fonction récursive binome2(n,k) plus efficace.

LLG . HX 6 6

2025-2026 Laurent Kaczmarek

5 � 4 Calcul récursif du maximum d’une liste f

On propose deux approches récursives pour évaluer le maximum d’une liste d’entiers.

1. En utilisant la définition par récurrence du maximum

max(t0, . . . , tn) := max
(

t0,max(t1, . . . , tn)
)

écrire une fonction récursive maxRec prenant en argument une liste d’entiers t et renvoyant son
maximum. On se souviendra que t[1:] est la liste obtenue en supprimant le premier terme de t.

2. Écrire une fonction récursive maxRecBis prenant en argument une liste d’entiers t et un indice
i renvoyant le maximum de t[i:]. On impose cette fois-ci que la récursion se fasse uniquement
suivant la variable d’indice.

6 � 4 Algorithme de Hörner ff

Soit P = p0 + p1X + ·· · + pnXn un polynôme à coefficients réels et a ∈ R. Le polynôme P sera repré-
senté par la liste (p0, . . . , pn) de ses coefficients. Pour calculer efficacement P(a), Hörner a proposé la
méthode suivante :

P(a) = p0 +a · (p1 +a · (p2 +a · (p3 +a · (· · ·))))
Par exemple, pour calculer P(2) lorsque P = p3X3 +p2X2 +p1X+p0, on calcule successivement :

p3, p2+2p3, p1+2(p2+2p3) = p1+2p2+22p3, p0+2
(
p1 +2p2 +22p3

)= p0+p12+p222+p323 = P(2)

1. Écrire une fonction récursive horner(t,a) prenant en argument la liste t représentant le poly-
nôme P et le réel a et renvoyant P(a) selon la méthode de Hörner.

2. En quoi l’algorithme de Hörner est-il plus efficace que celui utilisé ci-dessous ?

def eval(P,a):
s=0
for i in range(len(P)):

s=s+p[i]*a**i
return s

7 � 4 Un algorithme glouton ff

On revient au TP 3 et à l’algorithme glouton de paiement d’une somme n avec de devises de valeurs
v0 > v2 > ·· · > vp−1 = 1. On code les données du problème au moyen de deux variables : n du type
int (contenant la valeur de n) et val du type list (contenant dans l’ordre v0, . . ., vp−1). On renverra
la solution sous la forme d’une liste paiement contenant (x0, . . . , xp−1) (correspondant à un paiement
avec xi fois la pièce de valeur vi pour tout i ∈ �0, p −1�).

Écrire une fonction récursive monnaie(n,val) renvoyant la liste paiement selon cette méthode.

LLG . HX 6 7

2025-2026 Laurent Kaczmarek

8 � 4 Une énumération deN2 ff

Il s’agit de coder la célèbre bijection deN surN2 ainsi
que sa réciproque.

On se place dans un plan muni d’un repère ortho-
normé, et on numérote chaque point deN2 par le pro-
cédé décrit ci-contre.

1. Écrire une fonction récursive enumPtoN(x,y)
d’arguments x et y ayant pour résultat le numéro
du point de coordonnées (x, y).

2. Écrire une fonction récursive enumNtoP(n) d’ar-
gument n et ayant pour résultat les coordonnées
(x, y) du point numéroté par n. 0

• 2 • 5 • 9 • 14

• 1

• 3

• 6

• 10

• 4

• 7

• 11

•

• 8

• 12

•

•

• 13

•

•

•

•

•

•

•

REMARQUE : il n’est pas difficile d’expliciter cette bijection φ et son inverse φ−1.

9 � 4 Tours de Hanoï ff

Sur une tablette sont disposées 3 tiges 1, 2, 3.

Sur la tige 1, on a empilé n disques de taille strictement décrois-
sante. On veut déplacer cette pyramide vers la tige 3 en utilisant
la règle suivante : on peut enlever un disque du sommet pour le
mettre sur une autre tige à condition qu’il repose sur un disque de
rayon plus grand ou sur aucun disque.

1. Écrire une fonction récursive hanoi(n,o,i,d) d’arguments n, o (tige d’origine), i (tige intermé-
diaire) et d (tige de destination) affichant les mouvements à effectuer (sous la forme d’une suc-
cession de lignes de la forme « De o en i ») pour effectuer le transfert des n disques de la tige o à
la tour d en utilisant la tige i comme intermédiaire. L’appel hanoi(n,1,2,3) répondra alors à la
question.

2. Dénombrer les mouvements renvoyés par l’appel hanoi(n,1,2,3).

10 � 4 Énumération des permutations de �0,n −1� ff

Une permutation f de �0,n −1� est par définition une bijection de �0,n −1� sur lui-même et repré-
sentée par la liste [f(0),...,f(n-1)] de ses images. Écrire une fonction récursive enPerm(n) ren-
voyant la liste des permutations de �0,n −1�.

11 � 4 Un exemple de Backtracking fff

On se propose de déterminer tous les carrés magiques de taille 3 à coefficients dans �1,9�, i.e. toutes
les matrices à trois lignes et trois colonnes à coefficients dans �1,9� dont les sommes des lignes, des
colonnes et des deux diagonales principales sont égales :

LLG . HX 6 8

2025-2026 Laurent Kaczmarek

6 1 8

7 5 3

2 9 4

On codera systématiquement un tableau par une liste de listes. Pour l’exemple
ci-contre :

[[6,1,8],[7,5,3],[2,9,4]]

On pourra utiliser la fonction sum qui prend en argument une liste d’entiers et
en renvoie la somme.

1. Écrire une fonction estMagique prenant en argument une matrice carrée de taille trois et ren-
voyant True si elle est magique et False sinon.

2. On numérote les coefficients d’une matrice à trois lignes et trois colonnes de 0 à 8 en la parcourant
de la première à la dernière ligne, de gauche à droite. Soit n ∈ �0,8�. Sur quelle ligne et quelle
colonne le coefficient numéroté n est-il situé ?

On va générer toutes les solutions en utilisant une variable sol_p pour contenir des solutions par-
tielles au cours de l’algorithme. Une solution partielle est une matrice dont certains coefficients n’ont
pas encore été choisis et sont laissés égaux à 0 par convention. Par exemple :

[[6,1,8],[7,5,0],[0,0,0]]

3. Écrire une fonction récursive completer prenant en arguments un entier n, une solution partielle
sol_p et une liste de solutions liste qui ajoute à liste toutes les solutions dont les coefficients
numérotés de 0 à n −1 sont identiques à ceux de sol_p.

4. Écrire un script permettant d’obtenir toutes les solutions. Combien en dénombre-t-on ?

12 � 4 Mots de Dyck fff

Soit n ∈N∗. On dit qu’une liste t est un mot de Dyck de longueur 2n si :

1. elle est de longueur 2n ;

2. ne comporte que des −1 et des 1 ;

3. comporte autant de 1 que de −1 ;

4. pour tout k ∈ {0, . . . ,2n −1}, il y a dans [t[0],...,t[k]] au moins autant de 1 que de −1.

Par convention, la liste vide est le seul mot de Dyck de longueur nulle.

Il s’agit de toutes les formules de parenthésage correct. Par exemple, l’expression e1 = (() (() ())) cor-
respond au mot de Dyck [1,1,-1,1,1,-1,1,-1,-1,-1]. De même, l’expression e2 = () () corres-
pond à [1,-1,1,-1].

On admet que tout mot de Dyck non vide t s’écrit de façon unique sous la forme t=[1]+u+[-1]+v
où u et v sont deux mots de Dyck (éventuellement vides). Écrire une fonction récursive enumDyck(n)
qui renvoie la liste de tous les mots de Dyck de longueur 2n.

13 � 4 Le problème des huits reines fff

Le premier à formuler ce problème fut vraisemblablement le mathématicien allemand Johann Carl
Friedrich Gauss (1777-1855).

LLG . HX 6 9

2025-2026 Laurent Kaczmarek

Il s’agit de placer huit reines d’un jeu d’échecs sur un échiquier de 8 ×
8 cases sans que les dames ne se menacent mutuellement. Les règles
sont celles du jeu d’échecs et la couleur des pièces est ignorée. Par
conséquent, deux reines ne devraient jamais partager la même ran-
gée, colonne, ou diagonale. On peut trouver les solutions en explo-
rant récursivement l’espace des configurations possibles. Le but de
cet exercice est de dénombrer les solutions du problème des 8 reines.
On numérote les lignes et les colonnes de 0 à 7. Une solution peut
être codée au moyen d’une liste pos (variable globale). Pour tout i, la
reine située sur la ligne i se trouve sur la colonne j = pos[i].

7 0Z0l0Z0Z
6 Z0Z0ZqZ0
5 qZ0Z0Z0Z
4 Z0Z0l0Z0
3 0l0Z0Z0Z
2 Z0Z0Z0Zq
1 0ZqZ0Z0Z
0 Z0Z0Z0l0

0 1 2 3 4 5 6 7

Les tableaux pos seront remplis récursivement. Un compteur (variable globale) sera utilisé pour dé-
terminer le nombre de solutions.

1. Écrire une fonction conflit(i1,j1,i2,j2) renvoyant sous la forme d’un booléen si les reines
situées en (i1,j1) et (i2,j2) (numéro de ligne puis de colonne) sont en conflit.

2. Écrire une fonction compatible(i,j) renvoyant sous la forme d’un booléen si une reine en po-
sition (i,j) est compatible avec les reines déjà placées dans les lignes 0, . . ., i-1 (sauvegardées
dans les i premières cases du tableau pos). La fonction doit renvoyer True quelque soit j lorsque
i=0.

3. Écrire une fonction récursive reine(i) telle que l’appel reines(0) produise l’affichage des so-
lutions (ie les tableaux pos correspondants aux solutions) suivi du nombre de solutions.

4. Déterminer le nombre de solutions au problème des huit reines.

LLG . HX 6 10

2025-2026 Laurent Kaczmarek

4. Indications

1 �

L’entier n est le quotient dans les divisions euclidiennes de 2n et 2n +1 par 2.

2 �

Tester la parité de n au moyen du reste dans la division euclidienne.

3 �

La fonction φ : (x, y) 7→ (y, y +x) convient.

4 �

Au 2., on utilisera le quotient dans la division afin de renvoyer un résultat du type int.

5 �

Au 2., pour renvoyer le maximum de t[i:], il suffit de calculer récursivement le maximum de
t[i+1:] et de le comparer à t[i].

6 �

Remarquer que P(a) = p0 +a ×P1(a) où P1 est le polynôme de coefficients (p1, . . . , pn).

7 �

Effectuer le premier paiement avec v0 puis les autres récursivement.

8 �

Pour trouver le numéro du point (x, y), il suffit d’ajouter un à celui du point précédent.

9 �

Posez-vous la question suivante : si on sait résoudre le problème pour n−1 disques, comment peut-on
le résoudre pour n ?

10 �

Pour générer toutes les permutations de 0, . . ., n −1, il suffit de décrire toutes les permutations de 0,
. . ., n −2 et, pour chacune d’entre elles, insérer n −1 à toutes positions possibles (n au total).

11 �

Au 2., remarquer que n = 3× i + j où i et j sont respectivement les indices de ligne et de colonne du
coefficient numéroté n.

LLG . HX 6 11

2025-2026 Laurent Kaczmarek

12 �

Il faut faire varier (u, v) dans l’ensemble des couples de mots de Dyck dont la somme des longueurs
vaut 2n afin de générer tous les mots de Dyck de longueur 2n +2.

13 �

Il s’agit d’un algorithme de Backtracking (cf. l’exercice sur les carrés magiques de taille trois). Le cas
de base de reine est celui où i = 8, pour lequel on obtient une nouvelle solution.

LLG . HX 6 12

	Initiation à la programmation récursive
	Introduction
	Fonctions récursives
	Exemples classiques
	Déroulemement d'un appel récursif

	Exercices
	Indications

