Initiation a la programmation récursive

On expose les fondements de la programmation récursive, ses avantages et ses in-
convénients en les illustrant au moyen des algorithmes classiques.

’

Lo
4 Initiation ala programmationrécursive i i i i 1
D 0 18 0 T¢ 16 (0 (o) U PP 2
2 FONCHONS TECUISIVES . ..\ttt ettt ettt ettt ettt taa e e e eeeeennnnns 2
2.1 Exemples ClassiqQUesoueeetiininniiiiiiiiiii it 3
2.2 Déroulemementd'unappelrécursif................ i i 4
K T - <3 4 63 o0 6

N 1 U (o< (o) o 1< 11

2025-2026 Laurent Kaczmarek

1. Introduction

Le mot récursivité vient de la racine latine currere, « courir ». L'idée est de revenir en arriére, on la re-
trouve également dans le vocabulaire judiciaire (recours). En premiere approche, on peut considérer
la récursivité comme une version informatique de la récurrence.

Par exemple, pour calculer n! en n’utilisant que la multiplication, on peut utiliser :

X Un traitement itératif :
on calcule 1, 1 x 2 puis (1 x2) x 3, etc.jusqua (1 x2x---x(n—1)) xn
X La relation de récurrence n! = n x (n—1)! et son initialisation 0! =1 :

si n #0, alors on calcule (n —1)! et on multiplie le résultat par n.
Si n =0, alors on renvoie 1.

La plupart des langages de programmation offrent la possibilité de coder naturellement cette récur-
rence

Cela donne les programmes suivants en Python :

La fonction factRec est dite récursive et s'utilise, comme toute autre fonction, au moyen d'un appel :

120 1 1
1 1 120

La notion actuelle de fonction récursive a ses origines dans les travaux sur la calculabilité de Skolem,
Godel et Kleene dans les années 1920-1940.

2. Fonctions récursives

Nous n’entrerons dans aucun développement de logique formelle concernant la calculabilité et nous
contenterons de la « définition » suivante :

2025-2026 Laurent Kaczmarek

Définition 4.0. Fonction récursive
Une fonction récursive est une fonction faisant appel a elle-méme.

Afin que la série des appels récursifs ne soit pas infinie, il convient d’identifier un ou plusieurs cas
pour lesquels aucun appel récursif ne sera effectué. Dans le cas de la fonction factRec, il s’agit du cas
ou n = 0 qui correspond a une initialisation. On les appelle cas de base de la fonction récursive.

2.1. Exemples classiques

Tres naturelle dans certains contextes (calcul des termes d’'une suite récurrente par exemple), la ré-
cursivité est parfois plus subtile a mettre en place.

X Récurrences d’ordre un.
Considérons par exemple la suite définie par 1y =1 et u,+; = sinu, pour tout n € IN.
Ici, le cas de base est simple (il s’agit de

la condition initiale) et 'on effectue un
unique appel récursif.

0.46295789853781183

Il est possible d’effectuer plus d'un appel récursif dans la fonction.

X Récurrences d’ordre deux et plus.
Prenons I'inusable exemple de la suite de Fibonacci (f;,) n>0-

Les cas de base sont évidents (les conditions
initiales) et I'on effectue deux appels récur-
sifs.

X Nous avons déja vu en TP un algorithme naturellement récursif : la recherche dichotomique dans
une liste triée. Pour déterminer si un nombre x appartient a une liste triée numérique ¢ dans I'ordre
croissant, on la coupe en deux en son milieu #[m] et, selon la position relative de ¢[m] et x, on
renvoie True ou bien I'on recommence avec une des deux « moitiés » de .

/Six<4, xe ?

xe[-3[0][1]4]5[7[9] 2 & Six=4, renvoyer True

Six>4, ve[5]7]9] 2

LLG ¥ HX6 3

2025-2026

Laurent Kaczmarek

On utilise le slicing afin de « construire » les portions de liste de I'algorithme dichotomique. Le cas
de base peut étre celui ou t est vide ou bien réduit a un élément (valable si on n’applique pas la
fonction a une liste vide).

2.2. Déroulemement d’'un appel récursif

Quant on appelle une fonction récursive, cette derniere est en fait appelée a plusieurs reprises. Pour
gérer un programme ou plusieurs fonctions sont appelées, I'interpréteur utilise une pile d’exécution.
Il y emmagasine des valeurs et des adresses permettant de garder la trace de 1'endroit ot chaque
fonction active! doit retourner a la fin de son exécution.

Reprenons 'exemple de la fonction factRec de
l'introduction (cf. 2). Considérons 'appel fac-
tRec(5). Avant de renvoyer quoi que ce soit, il
engendre un appel factRec (4) quilui-méme en-
gendre un nouvel appel factRec(3) et ainsi de
suite jusqu’a I'appel de factRec (0).

Les appels sont imbriqués les uns dans les autres
comme des poupées russes.

Visualisons cela au moyen de la pile d’exécution :

— Appel factRec(5)
— Appel factRec(4)
— Appel factRec(3)

Appel factRec(2)

r—AppelfactRec(O)

{-AppelfactRec(l)

. factRec(0)
Empilement des appels —
factRec(1) factRec(1)
factRec(2) factRec(2) factRec(2)
factRec(3) factRec(3) factRec(3) factRec(3)
factRec(4) factRec(4) factRec(4) factRec(4) factRec(4)
|factRec(5)| factRec(5) factRec(5) factRec(5) factRec(5) factRec(5)

L'appel factRec (0) n’engendre aucun nouvel appel et se solde par le renvoi de 1 dans 'appel fac-
tRec (1), qui renvoie 1 x 1 dans I'appel factRec(2), qui renvoie 2 x 1 = 2 dans 'appel factRec (3),

1. Les fonctions actives sont celles qui ont été appelées, mais n'ont pas encore terminé leur exécution.

LLG ¥ HX6

2025-2026

Laurent Kaczmarek

qui renvoie 3 x 2 = 6 dans 'appel factRec(4), qui renvoie 4 x 6 = 24 dans I'appel factRec(5) qui

renvoie 5 x 24 = 120.

Renvoie 1
factRec(1)
factRec(2)
factRec(3)
factRec(4)
factRec(5)

Renvoie 1
factRec(2)
factRec(3)
factRec(4)
factRec(5)

Renvoie 2
factRec(3)
factRec(4)
factRec(5)

Dépilement des retours ——

Renvoie 6
factRec(4) Renvoie 24
factRec(5) factRec(5) Renvoie 120

La taille de la pile est bien-sir limitée par la mémoire finie de 'ordinateur. En Python, la taille de
la pile est limitée par défaut a 1000, ce qui est vite atteint en cas d’appels récursifs multiples dans
la définition de la fonction. Il est cependant possible d’augmenter sa taille pour les besoins d'une

exécution?.

Dans le cas ou la fonction compte plus
d’'un appel récursif, il est intéressant
de représenter les appels au moyen

d’un arbre.

Revenons a la fonction fib calculant

les termes de la suite de fibonacci (cf.
page 3). Lappel £ib(5) peut se résu-
mer par I'arbre ci-contre. On y voit en
particulier I'inflation du nombre d’ap-

fib(5

pels. Par exemple, fib(2) est calculé

trois fois.

fib(1)
£fib(3) T FIb(2) —, £ib(0)
“ _ T £ib(1)
fib(4
/ \fib(2) . fib(1)
) T £ib(0)
\ S £fib(1)
£ib(3) T £ib(0)
~~
fib(1)

Il faut donc éviter d’utiliser la fonction récursive fib, donnée dans le paragraphe d’exemples, pour
calculer les termes de la suite de Fibonacci : pour valeurs petites de n, le temps de calcul sera bien

trop long.

On retiendra les deux conseils suivants :

Ecueils de la récursivité et recommandations

= On évitera des appels récursifs multiples sur les mémes variables (cf. I'’exempe de Fibonacci).

= Onidentifiera clairement les cas de base de la fonction récursive : il faut s’assurer que tout appel
récursif aboutira a I'un d’entre eux.

2. En utilisant la fonction setrecursionlimit du module sys

LLG ¥ HX6

2025-2026 Laurent Kaczmarek

3. Exercices

o® Suite de Prouhet-Thue-Morse

lon. =1In
Lon1 = 1=1p
Ecrire une fonction récursive ptm(n) renvoyant t, pour tout 7 € IN.

On définit la suite () par tp =0, Vne N, {

o® Algorithmes d’exponentiation

La seconde méthode est connue sous le nom d’exponentiation rapide.

1. Ecrire une fonction récursive expo (a,n) renvoyant a” pour a€ Z et ne IN.
n)2 . .
. . n (a2) Sl n est pair
2. Pour un réel positif a et un entier n, on remarque que a” = A2
a (aT) si n est impair

En déduire une nouvelle fonction récursive quickExpo (a,n) renvoyant a” pour a€ Z et n€ IN.

o® Retour a Fibonacci : amélioration par vectorialisation f

On considere la suite de Fibonacci :

f():O,f]_:l, Vne}N,fn+2:fn+1+fn

Nous avons vu dans le cours qu'une fonction avec deux appels récursifs souffrait d'un temps de cal-
cul trop long par rapport a une version itérative. Nous allons voir comment remédier a cet écueil en
revenant a un seul appel récursif.

1. On pose X, = (fy, fn+1) pour tout n € N. Déterminer une fonction ¢ : R? — R? telle que

VneN, Xy = Xy

2. En déduire une fonction récursive X prenant en argument un entier n et renvoyant X,, sous la
forme d’'une liste.

n Q® Coefficients binomiaux f

n
On étudie différents algorithmes récursifs de calcul des coefficient . On renverra un résultat du

type int.
1. Ecrire une fonction récursive binome1 (n, k) exploitant la relation de Pascal.
n\ n(n-1} ,
2. Enremarquant que AP écrire une fonction récursive binome?2 (n,k) plus efficace.

LLG ¥ HX6 6

2025-2026 Laurent Kaczmarek

o® Calcul récursif du maximum d’une liste f

On propose deux approches récursives pour évaluer le maximum d’une liste d’entiers.

1. En utilisant la définition par récurrence du maximum
max(fy,..., ty) := max(fo, max(t,..., t,))
écrire une fonction récursive maxRec prenant en argument une liste d’entiers t et renvoyant son
maximum. On se souviendra que t [1:] estla liste obtenue en supprimant le premier terme de t.

2. Ecrire une fonction récursive maxRecBis prenant en argument une liste d’entiers t et un indice
i renvoyant le maximum de t [i :]. On impose cette fois-ci que la récursion se fasse uniquement
suivant la variable d’indice.

a Q® Algorithme de Horner ff

Soit P = pg + p1X+ -+ + p,X" un polyndme a coefficients réels et a € R. Le polynéme P sera repré-
senté par la liste (py, ..., pn) de ses coefficients. Pour calculer efficacement P(a), Horner a proposé la
méthode suivante :

P(@)=po+a-(pr+a-(p2+a-(ps+a-(--))))

Par exemple, pour calculer P(2) lorsque P = p3X3 + poX? + p1X + py, on calcule successivement :

p3, P2+2p3, p1+2(p2+2p3) = p1+2p2+2°ps, po+2(p1+2p2+2°p3) = po+p12+pa2*+ps2® =P(2)

1. Ecrire une fonction récursive horner (t,a) prenant en argument la liste t représentant le poly-
nome P et le réel a et renvoyant P(a) selon la méthode de Horner.

2. En quoi 'algorithme de Horner est-il plus efficace que celui utilisé ci-dessous ?

def eval(P,a):
s=0
for i in range(len(P)):
s=s+pl[i]*ax*x*xi
return s

Q@ Un algorithme glouton ff

On revient au TP 3 et a I’algorithme glouton de paiement d'une somme 7 avec de devises de valeurs
vgp > Uz > -+ > Vp-_1 = 1. On code les données du probléme au moyen de deux variables : n du type
int (contenant la valeur de n) et val du type 1ist (contenant dans l'ordre vy, ..., vp-1). On renverra
la solution sous la forme d’une liste paiement contenant (xy, ..., Xp-1) (Correspondant a un paiement
avec x; fois la piece de valeur v; pour tout i € [0, p —1]).

Ecrire une fonction récursive monnaie (n,val) renvoyant la liste paiement selon cette méthode.

LLG ¥ HX6 7

2025-2026 Laurent Kaczmarek

a (0RO Une énumération de N? ff

1l s’agit de coder la célébre bijection de IN sur IN? ainsi
que sa réciproque.

On se place dans un plan muni d’un repére ortho-
normé, et on numérote chaque point de IN? par le pro-
cédé décrit ci-contre.

1. Ecrire une fonction récursive enumPtoN(x,y)
d’arguments x et y ayant pour résultat le numéro
du point de coordonnées (x,).

2. Ecrire une fonction récursive enumNtoP (n) d’ar-
gument n et ayant pour résultat les coordonnées
(x,y) du point numéroté par n. 0

REMARQUE : il n’est pas difficile d’expliciter cette bijection ¢ et son inverse ¢ 1.

a o® Tours de Hanoi ff

Sur une tablette sont disposées 3 tiges 1, 2, 3.

Sur la tige 1, on a empilé n disques de taille strictement décrois-
sante. On veut déplacer cette pyramide vers la tige 3 en utilisant
la régle suivante : on peut enlever un disque du sommet pour le
mettre sur une autre tige a condition qu’il repose sur un disque de
rayon plus grand ou sur aucun disque.

1. Ecrire une fonction récursive hanoi(n,o,1,d) d’arguments n, o (tige d’origine), i (tige intermé-
diaire) et d (tige de destination) affichant les mouvements a effectuer (sous la forme d'une suc-
cession de lignes de la forme « De o en i») pour effectuer le transfert des n disques de la tige o a
la tour d en utilisant la tige 1 comme intermédiaire. Lappel hanoi (n,1,2,3) répondra alors a la
question.

2. Dénombrer les mouvements renvoyés par 'appel hanoi (n,1,2,3).

(X O Enumération des permutations de [0,n—1] ff

Une permutation f de [0, n — 1] est par définition une bijection de [0, n — 1] sur lui-méme et repré-
sentée par la liste [£(0),...,f(n-1)] de ses images. Ecrire une fonction récursive enPerm(n) ren-
voyant la liste des permutations de [0, 7 — 1].

Q® Un exemple de Backtracking fff

On se propose de déterminer tous les carrés magiques de taille 3 a coefficients dans [1,9], i.e. toutes
les matrices a trois lignes et trois colonnes a coefficients dans [1,9] dont les sommes des lignes, des
colonnes et des deux diagonales principales sont égales :

LLG ¥ HX6 8

2025-2026 Laurent Kaczmarek

nu On codera systématiquement un tableau par une liste de listes. Pour I'exemple
ci-contre :
(t6,1,8],07,5,31,[2,9,4]]

On pourra utiliser la fonction sum qui prend en argument une liste d’entiers et
2 4 en renvoie la somme.

1. Ecrire une fonction estMagique prenant en argument une matrice carrée de taille trois et ren-
voyant True si elle est magique et False sinon.

2. On numérote les coefficients d'une matrice a trois lignes et trois colonnes de 0 a 8 en la parcourant
de la premiére a la derniere ligne, de gauche a droite. Soit n € [0,8]. Sur quelle ligne et quelle
colonne le coefficient numéroté n est-il situé ?

On va générer toutes les solutions en utilisant une variable sol_p pour contenir des solutions par-
tielles au cours de I'algorithme. Une solution partielle est une matrice dont certains coefficients n'ont
pas encore été choisis et sont laissés égaux a 0 par convention. Par exemple :

[(6,1,8],[7,5,0],[0,0,0]]

3. Ecrire une fonction récursive completer prenant en arguments un entier n, une solution partielle
sol_p etune liste de solutions 1iste qui ajoute a 1iste toutes les solutions dont les coefficients
numérotés de 0 a n— 1 sont identiques a ceux de sol_p.

4. Ecrire un script permettant d’obtenir toutes les solutions. Combien en dénombre-t-on ?

Q® Mots de Dyck fff

Soit n € IN*. On dit qu'une liste t est un mot de Dyck de longueur 2n si :

1. elle est de longueur 2n;

2. ne comporte que des —1 et des 1;

3. comporte autant de 1 que de —1;

4. pour tout k€ {0,...,2n—1},ilyadans [t[0],...,t[k]] au moins autant de 1 que de —1.
Par convention, la liste vide est le seul mot de Dyck de longueur nulle.

Il s’agit de toutes les formules de parenthésage correct. Par exemple, I'expression ey = (() (() ())) cor-
respond au mot de Dyck [1,1,-1,1,1,-1,1,-1,-1,-1]. De méme, I'expression e, = () () corres-
ponda [1,-1,1,-1].

On admet que tout mot de Dyck non vide t s’écrit de fagon unique sous la forme t=[1]+u+[-1]+v
ol u et v sont deux mots de Dyck (éventuellement vides). Ecrire une fonction récursive enumDyck (n)
qui renvoie la liste de tous les mots de Dyck de longueur 2n.

Q® Le probléme des huits reines fff

Le premier a formuler ce probleme fut vraisemblablement le mathématicien allemand Johann Carl
Friedrich Gauss (1777-1855).

LLG ¥ HX6 9

2025-2026 Laurent Kaczmarek

Il s’agit de placer huit reines d'un jeu d’échecs sur un échiquier de 8 x
8 cases sans que les dames ne se menacent mutuellement. Les regles
sont celles du jeu d’échecs et la couleur des pieces est ignorée. Par
conséquent, deux reines ne devraient jamais partager la méme ran-
gée, colonne, ou diagonale. On peut trouver les solutions en explo-
rant récursivement I'espace des configurations possibles. Le but de
cet exercice est de dénombrer les solutions du probléme des 8 reines.
On numérote les lignes et les colonnes de 0 a 7. Une solution peut
étre codée au moyen d’une liste pos (variable globale). Pour tout i, la
reine située sur la ligne i se trouve sur la colonne j = pos[i].

Les tableaux pos seront remplis récursivement. Un compteur (variable globale) sera utilisé pour dé-
terminer le nombre de solutions.

1. Ecrire une fonction conflit(il, j1,1i2,j2) renvoyant sous la forme d'un booléen si les reines
situéesen (i1,j1) et (12, j2) (numéro de ligne puis de colonne) sont en conflit.

2. Ecrire une fonction compatible (i, j) renvoyant sous la forme d'un booléen si une reine en po-
sition (i, j) est compatible avec les reines déja placées dans les lignes O, ..., i-1 (sauvegardées
dans les i premieres cases du tableau pos). La fonction doit renvoyer True quelque soit j lorsque
1=0.

3. Ecrire une fonction récursive reine (i) telle que 'appel reines (0) produise I'affichage des so-
lutions (ie les tableaux pos correspondants aux solutions) suivi du nombre de solutions.

4. Déterminer le nombre de solutions au probléeme des huit reines.

LLG € HX6 10

2025-2026 Laurent Kaczmarek

4. Indications

(1 i}

L'entier n est le quotient dans les divisions euclidiennes de 2n et 2n + 1 par 2.

B8 -

Tester la parité de n au moyen du reste dans la division euclidienne.

(3 o

La fonction ¢ : (x, y) — (y, ¥y + x) convient.

a-

Au 2., on utilisera le quotient dans la division afin de renvoyer un résultat du type int.

8 -

Au 2., pour renvoyer le maximum de t[i:], il suffit de calculer récursivement le maximum de
t[i+1:] etdele comparerat[i].

G -

Remarquer que P(a) = py + a x P1(a) ou P, est le polynome de coefficients (py, ..., pn)-

(7 o

Effectuer le premier paiement avec vy puis les autres récursivement.

B -

Pour trouver le numéro du point (x, y), il suffit d’ajouter un a celui du point précédent.

B -

Posez-vous la question suivante : si on sait résoudre le probleme pour n—1 disques, comment peut-on
le résoudre pour n ?

o -

Pour générer toutes les permutations de 0, ..., n—1, il suffit de décrire toutes les permutations de 0,
..., n—2 et, pour chacune d’entre elles, insérer n — 1 a toutes positions possibles (n au total).

o -

Au 2., remarquer que n =3 x i + j ou i et j sont respectivement les indices de ligne et de colonne du
coefficient numéroté n.

LLG € HX6 11

2025-2026 Laurent Kaczmarek

o -

Il faut faire varier (1, v) dans I'ensemble des couples de mots de Dyck dont la somme des longueurs
vaut 2n afin de générer tous les mots de Dyck de longueur 2n + 2.

o -

Il s’agit d'un algorithme de Backtracking (cf. 'exercice sur les carrés magiques de taille trois). Le cas
de base de reine est celui ou i = 8, pour lequel on obtient une nouvelle solution.

LLG € HX6 12

	Initiation à la programmation récursive
	Introduction
	Fonctions récursives
	Exemples classiques
	Déroulemement d'un appel récursif

	Exercices
	Indications

