@ TP INFO 3 Introduction aux algorithmes gloutons

3

Dans ce TB nous allons nous intéresser a des problemes d’optimisation et a une
classe particuliere d'algorithmes associés, qualifiés de « gloutons » (greedy algo-
rithms).

Introduction aux algorithmes gloutons i i 1
1 Exemples introductifsottt i e e e e 2
1.1 Payer avec le moins de piéces possible............ o i i i 2
1.2 Recherche d'un chemin de cott minimal dans une matrice 3
1.3 Principe d'un algorithme glouton i i 3
2 BXOTCICES . . vttt e s 4

3 INAICATIONIS « .« o vttt et et et et e e e e e e 6

2025-2026 Laurent Kaczmarek

1. Exemples introductifs
Les problemes d’optimisation consistent en la recherche d'un maximum ou d'un minimum.

1.1. Payer avec le moins de piéces possible

Nous commencons par un probléme tres classique et concret. Parmi toutes les facons de payer une
somme de 153 € avec des billetsde 5€ et des pieces 1 € et2 €, celle qui nécessite le moins de devises
est clairement la suivante :

153 =30x5+1x2+1x1

Plus généralement, supposons que I'on dispose de p devises de valeurs entieres vy > -+ > v, avec
Up_l =]..

Comment payer une somme de 7 (un entier naturel non nul) en utilisant le moins de pieces possible ?

Puisque v,-1 = 1, on peut toujours payer la somme. Une idée naturelle est de commencer par payer
le plus possible avec la devise de valeur vy, puis de recommencer avec la devise de valeur v, etc.
jusqu’a tout payer. Ce principe est qualifié de glouton car il consiste a faire un choix optimal a chaque
itération dans I'espoir d’obtenir une solution optimale globale.

Le principe général est de commencer par payer le plus possible avec vy :
n=Xxyxvy+ry oulerestea payer ry vérifie 0 < ryp < vy
On reconnait la division euclidienne de n par vy. On itere ensuite ces divisions euclidiennes :
o =X1XV1+r , Tl =XpXUx+Ty , T2=X3XU3+r3 etc.
Cette approche ne se solde pas toujours par une solution optimale. Par exemple, pour trois devises de
valeurs 4, 3 et 1, I'algorithme donne pour le paiementde n=6:
6=1x44+0x3+2x1

alors que 'optimum est clairement 6 = 0 x4 +2x3+0 x 1.

Bien que ne donnnant pas toujours I’optimum, nous allons coder cet algorithme en Python. On utilise
deux variables d’entrée : n du type int (contenant la valeur de n) et valeurs du type 1list (conte-

nant dans cet ordre vy, ..., V-1 avec vp-1 = 1). On renvoie la solution sous la forme d’une liste paie-
ment=[x_0,...,x_p-1] (correspondant a un paiement avec x; fois la piece de valeur v; pour tout
i€[0,p—1D.

On parcourt les valeurs dans le sens décroissant en mettant a jour la variable reste (contenant le reste
a payer au fur et a mesure que les valeurs des pieces décroissent) et la variable rep qui contiendra la
solution en fin d’itération.

def monnaie(n,valeurs):
reste ,rep=n, []
for i in range(len(valeurs)):
rep.append(reste//valeurs[i])
reste=reste’valeurs [i]
return rep

LLG ¥ HX6 2

2025-2026 Laurent Kaczmarek

1.2. Recherche d’'un chemin de cotiit minimal dans une matrice

Soit M une matrice réelle a n lignes et n colonnes dont les lignes et les colonnes sont numérotées de
0 a n—1. On appelle chemin diagonal dans M toute liste de coefficients de M commencant a My et
finissanta M,,_1,,—1 en se déplacant a chaque itération soit vers le bas, soit vers la droite :

Par exemple, pour une matrice carrée de taille

152579 152579

n.:5, vous trouverez tracés c?—cor.ltre deux che- 213477 2 4 7341 2 4
mins dlagonflux. I.At,out chemin diagonal est as- 104721 104721
socié son cotit quln.est autre que la somme des 262105 216210 5
coefficients du chemin : 013893 013893
38 et 36 pourleschemins ci-contre 507125 5 0 7 HEES

L objectif est de trouver un algorithme permettant de calculer un chemin diagonal de M de cotit mi-
nimal, pour une matrice M de réels quelconque.

Les matrices seront représentées par des listes de listes. Ainsi, pour notre exemple :
((t¢,5,2,5,7,91,07,3,4,1,2,41, [1,0,4,7,2,1], [2,6,2,1,0,5], [0,1,3,8,9,3], [5,0,7,1,2,5]]

Un chemin diagonal sera codé par une chaine (type str de Python) formée sur les caracteres "d"
(pour droite) et "b" (pour bas). Par exemple, les chemins ci-dessus sont représentés respectivement
par les chaines suivantes :

"dbddbbbbdd" et "bbbdddbbdd"

On propose I'algorithme glouton suivant : on part de My o puis, a chaque itération, on choisit le dépla-
cement local optimal, i.e. on se dirige vers le coefficient minimal (s’il y a deux déplacements possibles,
sinon on n’a pas le choix), jusqu’a arriver au coefficient M,,_y ;1.

Q ® ————— Recherche d’un chemin de cotit minimal dans une matrice ff

1. Donner une matrice de taille n = 3 pour laquelle I'algorithme décrit ci-dessus est correct. Idem
avec incorrect.

2. Ecrire une fonction gloumin d’argument une matrice M renvoyant le chemin obtenu par I’algo-
rithme glouton décrit ci-dessus.

3. Vérifier que 'appel gloumin (MO) renvoie le chemin "ddbddbbdbb", o My est la matrice donnée
en exemple.
1.3. Principe d’un algorithme glouton

Le principe d’algorithme glouton est d’effectuer un choix optimal a chaque étape en espérant obtenir
une solution globale optimale. Cette approche ne conduit pas toujours a une solution effectivement
optimale (cf. les deux exemples introductifs).

LLG ¥ HX6 3

2025-2026 Laurent Kaczmarek

Forces et faiblesses des algorithmes gloutons
= Nous avons vu qu’un algorithme glouton n’aboutit pas toujours a une solution optimale.

= Néanmoins, les algorithmes gloutons présentent I'avantage d’étre faciles a implémenter par
rapport a d’autres approches algorithmiques.

2. Exercices

o® Des sauts de grenouille f

Une grenouille se déplace sur des nénuphars en ligne droite et par sauts successifs. On supposera
la droite graduée de 0 a n—1 (ou n est un entier naturel non nul), les nénuphars se trouvant a des
abscisses entieres (0 pour le nénuphar de départ et n— 1 pour celui d’arrivée). Voici un exemple, avec
n=13:

O Oo—0 O—0—=0 O
3 7

0 4 8 9 12

Connaissant les positions des nénuphars et sachant que la grenouille peut sauter au maximum une
distance de r unités d’abscisse, comment celle-ci doit se déplacer du premier au dernier nénuphar de
facon a minimiser son nombre total de saut(s) ? Il est assez naturel de penser qu'une solution optimale
sera obtenue en faisant a chaque étape un saut de longueur maximal. C’est un algorithme glouton.
Pour I'’exemple précédent et la valeur r = 3, on obtient donc le schéma suivant :

® o0 o O—© ®
0 3 4 7 8 9 12

On supposera la configuration codée au moyen de deux variables : r de type int (contenant la va-
leur de r) et pos de type 1ist (contenant les abscisses des nénuphars dans l'ordre croissant, qui
commence donc a 0 et finit a n —1). La solution renvoyée par I'algorithme sera codée par une liste
d’abscisses croissantes de 0 a n — 1, représentant les différentes étapes de la grenouille.

Sur I'exemple ci-dessus, on aura r=3, pos=[0,3,4,7,8,9,12] etlaréponse sera [0,3,4,7,9,12].
1. Onnote vy, ..., V), les abscisses croissantes des nénuphars (avec v; =0 et v, = n—1). Donner une
condition nécessaire et suffisante sur r et les v; pour que le probleme ait une solution.

2. En déduire une fonction admetSolution d’arguments r et pos renvoyant True si le probléeme
admet une solution et False sinon.

3. Ecrire une fonction saut d’arguments r, pos et i, renvoyant (en supposant qu'il existe) le plus
grand indice j tel que j>1i etpos[j]-pos[i]<= r.

4. En utilisant les fonctions admetSolution et saut, écrire une fonction sautsDeGrenouille d’ar-
gument r et pos renvoyant -1 si le probleme n’admet pas de solution et une solution (au format
indiqué ci-dessus) dans le cas contraire.

LLG ¥ HX6 4

2025-2026 Laurent Kaczmarek

o® Allocation optimale d’une salle d’examen ff

Dans une salle d’examen doivent se dérouler une série d’épreuves un jour donné. Ces dernieres sont
caractérisées par une heure de début d et une heure de fin f, comprises entre 8 et 19. On souhaite
planifier le plus possible d’épreuves, deux épreuves ne pouvant avoir lieu en méme temps (leurs in-
tervalles de temps ouverts doivent étre disjoints, elles sont alors dites compatibles). Les différentes
épreuves sont supposées stockées sous la forme d’'une liste ep de listes au format [d,f], triées par
heure de fin croissante.

1. Donner une condition nécessaire et suffisante de compatibilité des épreuves [d1,f1] et [d2,f2].

2. On adopte I'heuristique gloutonne suivante : on choisit I’épreuve se terminant au plus t6t, puis
I'épreuve se terminant au plus tot parmi celles qui sont compatibles avec la premiere, etc. jusqu’a
épuisement des épreuves. Ecrire une fonction allocation(ep) renvoyant la liste des épreuves
résultat de cet algorithme (au format [i1,...,ip] ouil,..., ip sontles indices dans la liste ep
des épreuves sélectionnées).

3. On peut démontrer que 'heuristique gloutonne décrite ci-dessus donne toujours le résultat op-
timal. On suppose dans cette question que les épreuves sont triées par durée croissante et on
adopte 'heuristique gloutonne suivante : on choisit la plus courte, puis la plus courte parmi
celles qui lui sont compatibles, etc. Ce choix mene-t-il toujours a une solution optimale ?

n Q® Allocation de salles de cours fff

Différents cours ont lieu un jour donné. Ces derniers sont caractérisés par une heure de début d et une
heure de fin f, comprises entre 8 et 19. A chaque cours, il faut attribuer une salle. On souhaite trouver
un planning optimal de ces cours, ie mobilisant le moins de salle(s) possible. Les différents cours sont
supposés stockés sous la forme d’'une liste cours de listes au format [d, f], triés par heure de début
croissante. Deux cours sont dits compatibles s’ils peuvent avoir lieu dans une méme salle. Les salles
attribuées seront numérotées a partir de 0 (et on supposera qu’elles sont en nombre suffisant).

1. Donner une condition nécessaire et suffisante de compatibilité des cours [d1,f1] et [d2,f2].

2. On adopte I'heuristique gloutonne suivante : on parcourt les cours dans I'ordre chronologique
de leur début et, pour chacun d’entre eux, si on trouve une salle déja attribuée et possible pour
ce cours, sinon on lui attribue une nouvelle salle. Ecrire une fonction allocation(cours) ren-
voyant le planning résultant de cet algorithme (au format [s1, . ..,sn] ou si estle numéro de la
salle du cours numéro i).

LLG ¥ HX6 5

2025-2026 Laurent Kaczmarek

3. Indications

(1 i}

Attention, il faut tenir compte dans la fonction gloumin du cas ol on arrive sur un des bords de la
matrice (derniere ligne ou derniere colonne).

B8 -

Au 4., 1'idée est d’itérer la fonction saut jusqu’a épuisement des nénuphars.

(3 o

Il suffit de parcourir dans I'ordre croissant des indices la liste ep et de retenir une épreuve si elle est
compatible avec la derniére épreuve enregistrée.

g -

On pourra utiliser une variable courssalles de type 1ist contenant, pour chaque salle déja attri-
buée, le numéro du dernier cours qui y est programmé (cette liste sera utile pour déterminer si on
peut a nouveau attribuer une salle a un nouveau cours ou s’il faut en attribuer une nouvelle).

LLG ¥ HX6 6

