
3 TP INFO 3 Introduction aux algorithmes gloutons

Dans ce TP, nous allons nous intéresser à des problèmes d’optimisation et à une
classe particulière d’algorithmes associés, qualifiés de « gloutons » (greedy algo-
rithms).

3 Introduction aux algorithmes gloutons . 1
1 Exemples introductifs . 2

1.1 Payer avec le moins de pièces possible . 2
1.2 Recherche d’un chemin de coût minimal dans une matrice . 3
1.3 Principe d’un algorithme glouton . 3

2 Exercices . 4
3 Indications . 6

2025-2026 Laurent Kaczmarek

1. Exemples introductifs

Les problèmes d’optimisation consistent en la recherche d’un maximum ou d’un minimum.

1.1. Payer avec le moins de pièces possible

Nous commençons par un problème très classique et concret. Parmi toutes les façons de payer une
somme de 153N avec des billets de 5N et des pièces 1N et 2N , celle qui nécessite le moins de devises
est clairement la suivante :

153 = 30×5+1×2+1×1

Plus généralement, supposons que l’on dispose de p devises de valeurs entières v0 > ·· · > vp−1 avec
vp−1 = 1.

Comment payer une somme de n (un entier naturel non nul) en utilisant le moins de pièces possible ?

Puisque vp−1 = 1, on peut toujours payer la somme. Une idée naturelle est de commencer par payer
le plus possible avec la devise de valeur v0, puis de recommencer avec la devise de valeur v1, etc.
jusqu’à tout payer. Ce principe est qualifié de glouton car il consiste à faire un choix optimal à chaque
itération dans l’espoir d’obtenir une solution optimale globale.

Le principe général est de commencer par payer le plus possible avec v0 :

n = x0 × v0 + r0 où le reste à payer r0 vérifie 0⩽ r0 < v0

On reconnaît la division euclidienne de n par v0. On itère ensuite ces divisions euclidiennes :

r0 = x1 × v1 + r1 , r1 = x2 × v2 + r2 , r2 = x3 × v3 + r3 etc.

Cette approche ne se solde pas toujours par une solution optimale. Par exemple, pour trois devises de
valeurs 4, 3 et 1, l’algorithme donne pour le paiement de n = 6 :

6 = 1×4+0×3+2×1

alors que l’optimum est clairement 6 = 0×4+2×3+0×1.

Bien que ne donnnant pas toujours l’optimum, nous allons coder cet algorithme en Python. On utilise
deux variables d’entrée : n du type int (contenant la valeur de n) et valeurs du type list (conte-
nant dans cet ordre v0, . . ., vp−1 avec vp−1 = 1). On renvoie la solution sous la forme d’une liste paie-
ment=[x_0,...,x_p-1] (correspondant à un paiement avec xi fois la pièce de valeur vi pour tout
i ∈ �0, p −1�).

On parcourt les valeurs dans le sens décroissant en mettant à jour la variable reste (contenant le reste
à payer au fur et à mesure que les valeurs des pièces décroissent) et la variable rep qui contiendra la
solution en fin d’itération.

def monnaie (n, valeurs):
reste ,rep=n ,[]
for i in range(len(valeurs)):

rep. append (reste // valeurs [i])
reste=reste% valeurs [i]

return rep

LLG . HX 6 2

2025-2026 Laurent Kaczmarek

1.2. Recherche d’un chemin de coût minimal dans une matrice

Soit M une matrice réelle à n lignes et n colonnes dont les lignes et les colonnes sont numérotées de
0 à n −1. On appelle chemin diagonal dans M toute liste de coefficients de M commençant à M0,0 et
finissant à Mn−1,n−1 en se déplaçant à chaque itération soit vers le bas, soit vers la droite :

Par exemple, pour une matrice carrée de taille
n = 5, vous trouverez tracés ci-contre deux che-
mins diagonaux. À tout chemin diagonal est as-
socié son coût qui n’est autre que la somme des
coefficients du chemin :

38 et 36 pour les chemins ci-contre

1 5 2 5 7 9
7 3 4 1 2 4
1 0 4 7 2 1
2 6 2 1 0 5
0 1 3 8 9 3
5 0 7 1 2 5





1 5 2 5 7 9
7 3 4 1 2 4
1 0 4 7 2 1
2 6 2 1 0 5
0 1 3 8 9 3
5 0 7 1 2 5




L’objectif est de trouver un algorithme permettant de calculer un chemin diagonal de M de coût mi-
nimal, pour une matrice M de réels quelconque.

Les matrices seront représentées par des listes de listes. Ainsi, pour notre exemple :

[[1,5,2,5,7,9],[7,3,4,1,2,4], [1,0,4,7,2,1], [2,6,2,1,0,5], [0,1,3,8,9,3], [5,0,7,1,2,5]]

Un chemin diagonal sera codé par une chaîne (type str de Python) formée sur les caractères "d"
(pour droite) et "b" (pour bas). Par exemple, les chemins ci-dessus sont représentés respectivement
par les chaînes suivantes :

"dbddbbbbdd" et "bbbdddbbdd"

On propose l’algorithme glouton suivant : on part de M0,0 puis, à chaque itération, on choisit le dépla-
cement local optimal, i.e. on se dirige vers le coefficient minimal (s’il y a deux déplacements possibles,
sinon on n’a pas le choix), jusqu’à arriver au coefficient Mn−1,n−1.

1 � 4 Recherche d’un chemin de coût minimal dans une matrice ff

1. Donner une matrice de taille n = 3 pour laquelle l’algorithme décrit ci-dessus est correct. Idem
avec incorrect.

2. Écrire une fonction gloumin d’argument une matrice M renvoyant le chemin obtenu par l’algo-
rithme glouton décrit ci-dessus.

3. Vérifier que l’appel gloumin(M0) renvoie le chemin "ddbddbbdbb", où M0 est la matrice donnée
en exemple.

1.3. Principe d’un algorithme glouton

Le principe d’algorithme glouton est d’effectuer un choix optimal à chaque étape en espérant obtenir
une solution globale optimale. Cette approche ne conduit pas toujours à une solution effectivement
optimale (cf. les deux exemples introductifs).

LLG . HX 6 3

2025-2026 Laurent Kaczmarek

Forces et faiblesses des algorithmes gloutons

Nous avons vu qu’un algorithme glouton n’aboutit pas toujours à une solution optimale.

Néanmoins, les algorithmes gloutons présentent l’avantage d’être faciles à implémenter par
rapport à d’autres approches algorithmiques.

2. Exercices

2 � 4 Des sauts de grenouille f

Une grenouille se déplace sur des nénuphars en ligne droite et par sauts successifs. On supposera
la droite graduée de 0 à n − 1 (où n est un entier naturel non nul), les nénuphars se trouvant à des
abscisses entières (0 pour le nénuphar de départ et n −1 pour celui d’arrivée). Voici un exemple, avec
n = 13 :

0 3 4 7 8 9 12

Connaissant les positions des nénuphars et sachant que la grenouille peut sauter au maximum une
distance de r unités d’abscisse, comment celle-ci doit se déplacer du premier au dernier nénuphar de
façon à minimiser son nombre total de saut(s) ? Il est assez naturel de penser qu’une solution optimale
sera obtenue en faisant à chaque étape un saut de longueur maximal. C’est un algorithme glouton.
Pour l’exemple précédent et la valeur r = 3, on obtient donc le schéma suivant :

0 3 4 7 8 9 12

On supposera la configuration codée au moyen de deux variables : r de type int (contenant la va-
leur de r) et pos de type list (contenant les abscisses des nénuphars dans l’ordre croissant, qui
commence donc à 0 et finit à n − 1). La solution renvoyée par l’algorithme sera codée par une liste
d’abscisses croissantes de 0 à n −1, représentant les différentes étapes de la grenouille.

Sur l’exemple ci-dessus, on aura r=3, pos=[0,3,4,7,8,9,12] et la réponse sera [0,3,4,7,9,12].

1. On note v1, . . ., vm les abscisses croissantes des nénuphars (avec v1 = 0 et vm = n−1). Donner une
condition nécessaire et suffisante sur r et les vi pour que le problème ait une solution.

2. En déduire une fonction admetSolution d’arguments r et pos renvoyant True si le problème
admet une solution et False sinon.

3. Écrire une fonction saut d’arguments r, pos et i, renvoyant (en supposant qu’il existe) le plus
grand indice j tel que j>i et pos[j]-pos[i]<= r.

4. En utilisant les fonctions admetSolution et saut, écrire une fonction sautsDeGrenouille d’ar-
gument r et pos renvoyant -1 si le problème n’admet pas de solution et une solution (au format
indiqué ci-dessus) dans le cas contraire.

LLG . HX 6 4

2025-2026 Laurent Kaczmarek

3 � 4 Allocation optimale d’une salle d’examen ff

Dans une salle d’examen doivent se dérouler une série d’épreuves un jour donné. Ces dernières sont
caractérisées par une heure de début d et une heure de fin f , comprises entre 8 et 19. On souhaite
planifier le plus possible d’épreuves, deux épreuves ne pouvant avoir lieu en même temps (leurs in-
tervalles de temps ouverts doivent être disjoints, elles sont alors dites compatibles). Les différentes
épreuves sont supposées stockées sous la forme d’une liste ep de listes au format [d,f], triées par
heure de fin croissante.

1. Donner une condition nécessaire et suffisante de compatibilité des épreuves [d1,f1] et [d2,f2].

2. On adopte l’heuristique gloutonne suivante : on choisit l’épreuve se terminant au plus tôt, puis
l’épreuve se terminant au plus tôt parmi celles qui sont compatibles avec la première, etc. jusqu’à
épuisement des épreuves. Écrire une fonction allocation(ep) renvoyant la liste des épreuves
résultat de cet algorithme (au format [i1,...,ip] où i1, . . ., ip sont les indices dans la liste ep
des épreuves sélectionnées).

3. On peut démontrer que l’heuristique gloutonne décrite ci-dessus donne toujours le résultat op-
timal. On suppose dans cette question que les épreuves sont triées par durée croissante et on
adopte l’heuristique gloutonne suivante : on choisit la plus courte, puis la plus courte parmi
celles qui lui sont compatibles, etc. Ce choix mène-t-il toujours à une solution optimale ?

4 � 4 Allocation de salles de cours fff

Différents cours ont lieu un jour donné. Ces derniers sont caractérisés par une heure de début d et une
heure de fin f , comprises entre 8 et 19. À chaque cours, il faut attribuer une salle. On souhaite trouver
un planning optimal de ces cours, ie mobilisant le moins de salle(s) possible. Les différents cours sont
supposés stockés sous la forme d’une liste cours de listes au format [d,f], triés par heure de début
croissante. Deux cours sont dits compatibles s’ils peuvent avoir lieu dans une même salle. Les salles
attribuées seront numérotées à partir de 0 (et on supposera qu’elles sont en nombre suffisant).

1. Donner une condition nécessaire et suffisante de compatibilité des cours [d1,f1] et [d2,f2].

2. On adopte l’heuristique gloutonne suivante : on parcourt les cours dans l’ordre chronologique
de leur début et, pour chacun d’entre eux, si on trouve une salle déjà attribuée et possible pour
ce cours, sinon on lui attribue une nouvelle salle. Écrire une fonction allocation(cours) ren-
voyant le planning résultant de cet algorithme (au format [s1,...,sn] où si est le numéro de la
salle du cours numéro i).

LLG . HX 6 5

2025-2026 Laurent Kaczmarek

3. Indications

1 �

Attention, il faut tenir compte dans la fonction gloumin du cas où on arrive sur un des bords de la
matrice (dernière ligne ou dernière colonne).

2 �

Au 4., l’idée est d’itérer la fonction saut jusqu’à épuisement des nénuphars.

3 �

Il suffit de parcourir dans l’ordre croissant des indices la liste ep et de retenir une épreuve si elle est
compatible avec la dernière épreuve enregistrée.

4 �

On pourra utiliser une variable courssalles de type list contenant, pour chaque salle déjà attri-
buée, le numéro du dernier cours qui y est programmé (cette liste sera utile pour déterminer si on
peut à nouveau attribuer une salle à un nouveau cours ou s’il faut en attribuer une nouvelle).

LLG . HX 6 6

