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COMPOSITION # 3

Samedi 6 décembre 2025 (8h-12h)

L’usage de la calculatrice est interdit durant l’épreuve.

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si le candidat découvre ce qu’il pense être une erreur d’énoncé, il le précisera dans sa copie.

Le candidat laissera libre la première page de sa copie.

Je m’autorise à enlever des points à tout candidat ne respectant pas les consignes suivantes :

souligner les justifications essentielles et
�� ��encadrer les résultats importants

Sujet 1 Méthodes de descente de gradient

On dit qu’un réel x∗ est un minimiseur de φ :R→R si φ admet un minimum en x∗, c’est-à-dire

∀x ∈R , φ(x) ⩾ φ(x∗)

On rappelle qu’une fonction φ :R→R dérivable est convexe si et seulement si φ′ est croissante. De plus,
en cas de convexité, la courbe représentative de φ est situé au-dessus de toutes ses tangentes.

Soit α> 0. Une fonction φ :R→R est dite α-convexe si φα : x 7→ φ(x)−α
x2

2
est convexe.

Les méthodes de descente de gradient ont pour objectif de déterminer des approximations d’un mini-
misateur d’une fonction sous certaines hypothèses de régularité. Dans ce problème, nous étudierons
plusieurs de ces méthodes.

Dans tout le problème, la notation f :R→R désignera une fonction de classe C 1.

Dans les parties I, II,III et IV, la notation (xn)n∈N désignera une suite vérifiant les propriétés suivantes :

x0 ∈R et ∀n ∈N , xn+1 = xn −τ f ′(xn) où τ> 0

Ainsi ∀n ∈N, xn+1 = gτ(xn), en posant

gτ : x 7→ x −τ f ′(x)

L’idée de cette relation de récurrence est très intuitive : à chaque itération, on choisit de se déplacer
dans la direction où f décroît, d’où le nom de la méthode.
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La première partie regroupe quelques lemmes qui seront utilisés dans la suite du sujet.

L’algorithme de descente de gradient à pas fixe est étudiée dans les parties II (deux exemples introductifs
illustrent les deux jeux d’hypothèses ensuite étudiés), III (étude du cas où f est α-convexe) et IV (étude de
la convergence sous un autre jeu d’hypothèse).

La cinquième et dernière partie est consacrée à l’étude d’une variante implicite de l’algorithme de descente
de gradient à pas constant.

Partie I – Préliminaires

On rappelle que f :R→R est une fonction de classe C 1.

1. Soit φ ∈C 0(R,R) telle que φ(x) −−−−−→
x→−∞ +∞ et φ(x) −−−−−→

x→+∞ +∞.

a. Justifier l’existence de a > 0 tel que ∀x ∈R, |x| > a =⇒ φ(x) > φ(0).

b. En déduire que φ admet un minimiseur.

2. Dans cette question, on suppose que f est convexe et x∗ ∈R.

Justifier que x∗ est un minimiseur de f si et seulement si f ′(x∗) = 0.

3. Soit τ> 0. Dans cette question, on suppose que f est convexe et f ′ est L-Lipschitzienne, où L > 0.

a. Montrer que ∀(x, y) ∈R2 ,
(

f ′(x)− f ′(y)
)2 ⩽ L(x − y)

(
f ′(x)− f ′(y)

)
.

b. Démontrer que ∀(x, y) ∈R2 ,
(

gτ(x)− gτ(y)
)2 ⩽ (x − y)2 −τ(2−τL)(x − y)

(
f ′(x)− f ′(y)

)
.

c. On suppose que f admet un minimiseur x∗ et 0 < τ ⩽
2

L
· Montrer que

( |xn −x∗|
)

n∈N décroît.

4. Soit α> 0. Dans cette question, on suppose que f est α-convexe.

a. Démontrer que ∀x ∈R , f (x) ⩾ f (0)+ f ′(0)x +α
x2

2
et en déduire que f admet un minimiseur.

b. Justifier que ce minimiseur est unique. INDICATION : Vérifier que f ′ est strictement croissante.

Partie II – Étude de deux exemples

Dans cette partie, nous allons établir la convergence et estimer la vitesse de convergence de (xn)n⩾0 dans
deux cas particuliers.

1. Dans cette question, on pose f (x) := L

2
x2 pour tout x ∈R, où L appartient àR∗+.

a. Montrer que, pour tout n dansN, xn+1 = (1−τL)xn , puis exprimer xn en fonction de x0 et n ∈N.

b. On suppose x0 ̸= 0. Justifier que xn −−−−−→
n→+∞ 0 si et seulement si 0 < τ< 2

L
·

2. Dans cette question, on pose f (x) := 1

3
x3 si x ⩾ 0 et f (x) := 0 si x < 0.

2
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a. Justifier que f ∈C 1(R,R) et que f est convexe. Quel est l’ensemble de ses minimiseurs ?

b. On suppose que τ> 0 et x0 ⩾
1

τ
· Montrer que (xn)n∈N converge vers un minimiseur de f .

c. On suppose jusqu’à la fin de cette partie que τ> 0 et 0 < x0 < 1

τ
·

Justifier que (xn)n∈N est décroissante, à valeurs dansR∗+, et satisfait ∀n ∈N , xn+1 = xn(1−τxn).

d. Exprimer
1

xn+1
− 1

xn
en fonction de xn pour tout n ∈N. En déduire que xn ∼ 1

nτ
·

INDICATION : Appliquer le théorème de Cesáro.

Partie III – Étude de la convergence dans le cas d’une fonction α-convexe

Dans cette section, on suppose que f ′ est L-Lipschitzienne, avec L > 0.

On fixe τ tel que 0 < τ⩽
2

L
· On suppose de plus que f est α-convexe, avec α> 0.

On note x∗ l’unique minimiseur de f (cf. la question I.4.b.).

1. a. Justifier que x 7→ f ′(x)−αx est une fonction croissante.

b. Établir que, pour tous x et y dansR, α(x − y)2 ⩽
(

f ′(x)− f ′(y)
)

(x − y).

c. En déduire que, pour tous x et y dansR, on a(
gτ(x)− gτ(y)

)2 ⩽ (x − y)2(1−ατ(2−Lτ)
)

2. On suppose 0 < τ< 2

L
· Montrer l’existence de ρ ∈ [0,1[ tel que ∀n ∈N, |xn −x∗ | ⩽ ρn |x0 −x∗ |.

En déduire que xn −−−−−→
n→+∞ x∗.

Partie IV – Étude de la convergence sous un autre jeu d’hypothèses

Dans cette partie, on suppose que f est convexe et admet un minimiseur x∗ ∈R, et f ′ est L-Lipschitzienne
où L > 0.

On suppose également que 0 < τ< 2

L
·

1. Montrer que, pour tous x et y dansR, f (y) ⩽ f (x)+ f ′(x)(y −x)+ L

2
(y −x)2· En déduire que

∀n ∈N , f (xn+1) ⩽ f (xn)− τ

2
(2−τL)

(
f ′ (xn)

)2

3
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2. L’objectif de cette question est d’établir la convergence de (xn)n∈N vers un minimiseur de f . On rappelle
qu’on a noté x∗ ∈R un tel minimiseur, que l’on suppose exister, mais que celui-ci n’est pas nécessaire-
ment unique. Pour tout n ∈N, on pose

Sn :=
n∑

i=0

(
f ′(xi )

)2

a. Montrer que

∀n ∈N , Sn ⩽
2

τ(2−τL)

(
f (x0)− f (xn+1)

)
b. Établir que (xn)n∈N est bornée et en déduire que (Sn)n∈N est bornée.

c. Démontrer que (Sn)n∈N converge puis que f ′ (xn) −−−−−→
n→+∞ 0.

d. Justifier l’existence de φ :N→N strictement croissante et d’un minimiseur x∗∗ de f tels que

xφ(n) −−−−−→
n→+∞ x∗∗

e. Démontrer que xn −−−−−→
n→+∞ x∗∗. INDICATION : Utiliser le I.3.c.

Partie V – Variante implicite de la descente de gradient à pas constant

On considère un réel τ> 0. Dans cette partie, on suppose que f est convexe et admet un minimiseur x∗. On
considère x0 ∈R et, pour tout n ∈N, on définit xn+1 comme étant l’unique minimiseur de la fonction

x 7→ 1

2
(x −xn)2 +τ f (x)

On notera que, dans cette ultime partie du sujet, la définition de (xn)n⩾0 du préambule n’est plus valable et
est remplacée par celle donnée ci-dessus.

1. Justifier que (xn)n∈N est bien définie.

INDICATION : On pourra établir que x 7→ 1

2
(x −µ)2 +τ f (x) est 1-convexe pour tout µ ∈R.

2. On note T : x 7→ x +τ f ′(x).

a. Vérifier que, pour tous x et y dansR,
∣∣T(x)−T(y)

∣∣ ⩾ |x − y |.
b. Vérifier que, pour tout n ∈N, T(xn+1) = xn .

c. En déduire que
( |xn −x∗|

)
n∈N est décroissante.

3. Nous allons établir que (xn)n∈N converge vers un minimiseur x∗∗ de f .

a. Justifier que, pour tout n dansN, τ f (xn+1)+ 1

2
(xn+1 −xn)2 ⩽ τ f (xn).

b. En déduire que xn+1 −xn −−−−−→
n→+∞ 0. INDICATION : S’inspirer du IV.2.

c. Montrer que (xn)n∈N converge vers un minimiseur de f .
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