Toutes les suites rencontrées ci-dessous sont à valeurs réelles.

	Suites numériques		1
	1	Quizz	2
	2	Exercices élémentaires	2
	3	Exercices classiques plus techniques	4
	4	Indications	6
	5	Solutions	ρ

1. Quizz

Vrai ou faux?

- 1. La suite $(u_n)_{n\geqslant 0}$ la suite définie par $u_n=\sqrt{n^4+1}-n^2$ est bornée.
- **2.** Pour tout $(u_n)_{n\geqslant 0} \in (\mathbb{R}_+)^{\mathbb{N}}$, $\frac{u_n}{1+u_n} \xrightarrow[n \to +\infty]{} 0 \iff u_n \xrightarrow[n \to +\infty]{} 0$.
- 3. La somme de deux suites divergentes est divergente.
- 4. La somme d'une suite convergente et d'une suite divergente est divergente.
- **5.** Une suite non majorée diverge vers $+\infty$.
- **6.** $u_n v_n \xrightarrow[n \to +\infty]{} 0 \implies (u_n)_{n \geqslant 0}$ ou $(v_n)_{n \geqslant 0}$ est bornée.
- 7. $\left(u_n \xrightarrow[n \to +\infty]{} \infty \text{ ou } u_n \xrightarrow[n \to +\infty]{} -\infty\right) \iff |u_n| \xrightarrow[n \to +\infty]{} +\infty.$
- 8. Une suite divergeant vers $+\infty$ est croissante à partir d'un certain rang.
- **9.** Si $(u_n v_n)_{n \ge 0}$ est bornée, alors $(u_n)_{n \ge 0}$ et $(v_n)_{n \ge 0}$ sont bornées.
- Une suite décroissante qui admet une sous-suite convergente est convergente.
- 11. Une suite croissante qui admet une sous-suite majorée est convergente.
- 12. La partie entière d'une suite réelle convergente est convergente.
- 13. Le maximum de deux suites réelles convergentes définit une suite convergente.
- 14. Une suite positive qui converge vers 0 est décroissante à partir d'un certain rang.
- 15. Le quotient de deux suites de limite $+\infty$ admet une limite dans \mathbb{R} .
- **16.** Si $\theta_n \xrightarrow[n \to +\infty]{} +\infty$, alors $(\sin \theta_n)_{n\geqslant 0}$ n'a pas de limite.
- 17. Le produit de deux suites réelles minorées est minoré.
- 18. Une suite réelle croissante à partir d'un certain rang est minorée.

2. Exercices élémentaires

— Un système linéaire

Soit $\lambda \in \mathbb{R}^*$, $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux suites réelles telles que $(u_n + \lambda v_n)_{n \in \mathbb{N}}$ et $(u_n - \lambda v_n)_{n \in \mathbb{N}}$ convergent. Justifier que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent.

———— Somme des carrés

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $u_n^2 + v_n^2 \xrightarrow[n \to +\infty]{} 0$.

Que dire de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$? On justifiera avec soin sa réponse.

4 ♥ • — Exemples — —

Donner des exemples de suites : majorée et non minorée, minorée et non majorée puis ni croissante, ni décroissante.

Donner l'exemple de deux suites divergentes dont le produit est une suite convergente.

Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et, pour tout entier naturel $n,\,u_{n+1}=\frac{u_n^2+1}{2}$.

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n^3}$. Étudier le comportement asymptotique de $(u_n)_{n\in\mathbb{N}}$.

T V T T WHEL

Soit $(\alpha, \beta) \in \mathbb{R}^2$. Déterminer un équivalent simple de la suite de terme général $u_n := \frac{n^{\alpha}}{1 + n^{\beta}}$.

Soit, pour $n \in \mathbb{N}$, f_n l'application définie par $\forall x \in \mathbb{R}$, $f_n(x) := x^n + 6x - 1$.

- **1.** Démontrer que, pour $n \in \mathbb{N}$, il existe un unique $x_n \in \mathbb{R}_+$ tel que $f_n(x_n) = 0$.
- **2.** Montrer que $(x_n)_{n\geqslant 0}$ est monotone et convergente.
- **3.** Déterminer la limite de $(x_n)_{n \ge 0}$.

10 ${\mathfrak Q}$ lacktriangle Récurrence linéaire d'ordre un avec second membre f lacktriangle

Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant $u_0\in\mathbb{R}$ et $\forall\,n\in\mathbb{N},\ u_{n+1}=2^n-3u_n\ (\star).$

- 1. Déterminer une suite géométrique $(v_n)_{n\in\mathbb{N}}$ vérifiant (\star) .
- **2.** Calculer la suite de terme général $w_n := u_n v_n$. On exprimera w_n en fonction de n et u_0 .
- **3.** On suppose que $u_0 \neq \frac{1}{5}$. Montrer que $u_n \sim \left(u_0 \frac{1}{5}\right)(-3)^n$ puis trouver un équivalent de $u_{n+1} u_n$.
- **4.** En déduire l'ensemble $\{u_0; (u_n)_{n \in \mathbb{N}} \text{ est monotone}\}.$

11 $\circ \bullet$ — Monotonie des moyennes d'une suite monotone f — —

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ monotone. Montrer que $\left(\frac{u_0 + \cdots + u_n}{n+1}\right)_{n \in \mathbb{N}}$ est monotone.

Soit $(\alpha, \beta) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}_+^*$. Étudier le comportement en $+\infty$ de la suite définie par $u_n := \left(1 + \frac{\lambda}{n^{\alpha}}\right)^{n^{\beta}}$.

Montrer que la réciproque du théorème de Césaro est vraie sous l'hypothèse supplémentaire que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.

14 ${\Bbb Q}$ ${lacktriangledown}$ Un système non linéaire f ————

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites de réels telles que $u_n+v_n\xrightarrow[n\to+\infty]{}0$ et $e^{u_n}+e^{v_n}\xrightarrow[n\to+\infty]{}2$.

- 1. Démontrer que $e^{\theta_n} + e^{-\theta_n} \xrightarrow[n \to +\infty]{} 2$ où $\forall n \in \mathbb{N}, \ \theta_n := \frac{u_n v_n}{2}$.
- **2.** En déduire que $\theta_n \xrightarrow[n \to +\infty]{} 0$ puis que les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont convergentes.

INDICATION : Exprimer θ_n en fonction de $c_n := e^{\theta_n} + e^{-\theta_n}$ en résolvant une équation du second degré.

3. Exercices classiques plus techniques

15 \circ \circ Une suite implicite f

Soit $n \in \mathbb{N}$, on note u_n l'unique réel solution de l'équation $x^5 + nx - 1 = 0$.

- **1.** Justifier l'existence de $(u_n)_{n \ge 0}$.
- **2.** Montrer que $(u_n)_{n\geqslant 0}$ converge et déterminer sa limite. Trouver un équivalent de u_n .

16 ${\mathbb Q}$ ${f \odot}$ — Une forme indéterminée ${f f}$ — —

Étudier le comportement asymptotique de la suite définie par $u_n = \left(\frac{e^n - e^{-n}}{e^n + e^{-n}}\right)^n$.

17 $\circ \bullet$ — Exemples et contre-exemples sur les bornes ff — —

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels bornées.

1. On suppose dans cette question que $\forall (k,\ell) \in \mathbb{N}^2$, $u_k \leqslant v_\ell$. Comparer $\sup_{k \in \mathbb{N}} u_k$ et $\inf_{\ell \in \mathbb{N}} v_\ell$.

- **2.** On suppose dans cette question que $\forall k \in \mathbb{N}, u_k \leq v_k$.
 - **a.** Démontrer que $\inf_{\ell \in \mathbb{N}} u_{\ell} \leqslant \inf_{\ell \in \mathbb{N}} v_{\ell}$ et $\sup_{\ell \in \mathbb{N}} u_{\ell} \leqslant \sup_{\ell \in \mathbb{N}} v_{\ell}$.
 - **b.** Donner un exemple de suites pour lesquelles $\sup_{\ell \in \mathbb{N}} u_{\ell} < \inf_{\ell \in \mathbb{N}} v_{\ell}$.
 - **c.** Même question avec $\sup_{\ell \in \mathbb{N}} u_{\ell} > \inf_{\ell \in \mathbb{N}} v_{\ell}$.

Vers Stirling ff —

Soit $(u_n)_{n\geqslant 1}$ la suite définie par $u_n=\frac{\sqrt{n}}{4^n}\binom{2n}{n}$.

- **1.** Déterminer le sens de variation de $(u_n)_{n \ge 1}$.
- **2.** Démontrer que $\forall n \geqslant 1$, $u_n \leqslant \sqrt{\frac{n}{2n+1}}$.
- **3.** Montrer que la suite $(u_n)_{n\geqslant 1}$ converge vers un réel ℓ tel que $\frac{1}{2}\leqslant \ell\leqslant \frac{1}{\sqrt{2}}$.

4. Indications

Pour trouver des contre-exemples, il est parfois intéressant de définir u_n différemment selon la parité de n.

2 5 _____

Appliquer les théorèmes relatifs aux opérations sur les limites.

3 5 ----

Inutile de revenir à la définition : on peut conclure directement via un théorème.

Chercher des exemples très simples, pas exemple des suites d'entiers relatifs.

5 ⁵

On pourra utiliser la suite $((-1)^n)_{n\geq 0}$.

Commencer par une étude graphique.

<u>7</u> ໆ

Quel est le signe de u_n pour tout $n \in \mathbb{N}$? En déduire que la suite est monotone.

8 5 _____

Effectuer une disjonction de cas selon le signe de β .

On pourra vérifier que x_n appartient à $[0, \frac{1}{6}]$ pour tout $n \in \mathbb{N}$.

On trouve $\forall n \in \mathbb{N}, \ w_n = (-3)^n w_0 = (-3)^n \left(u_0 - \frac{1}{5}\right).$

Poser

$$v_n = \frac{1}{n+1} (u_0 + u_1 + u_2 + \dots + u_n)$$

puis vérifier que

$$(n+2)(v_{n+1}-v_n)=u_{n+1}-v_n$$

S'intéresser à $\ln u_n$. Entreprendre une disjonction de cas dans le but de trouver un équivalent de $\ln u_n$.

Si $(u_n)_{n\in\mathbb{N}}$ est monotone, alors elle admet une limite dans $\overline{\mathbb{R}}$.

Passer à l'angle moitié au 1.

On trouve que $u_n \sim \frac{1}{n}$.

C 61

Attention, c'est une forme indéterminée. Revenir à une forme exponentielle et trouver la limite de $\ln u_n$.

17 o _____

On posera U := $\{u_n; n \in \mathbb{N}\}\$ et V := $\{v_n; n \in \mathbb{N}\}\$ afin d'alléger les notations.

C 81

Pour des raisons évidentes de simplification, il est adapté de former u_{n+1}/u_n au 1. Procéder par récurrence au 2. Pour le 3., remarquer que $u_1 = 1/2$.

LLG ♦ HX 6

5. Solutions

1. Vrai. Pour tout $n \in \mathbb{N}$, on a

$$u_n = \frac{1}{\sqrt{n^4 + 1} + n^2}$$

On en déduit que la suite $(u_n)_{n\geqslant 0}$ est minorée par 0 et majorée par 1.

- **2.** Vrai. Si $(u_n)_{n\geqslant 0}$ converge vers 0, $(v_n)_{n\geqslant 0}$ aussi d'après les théorèmes sur les opérations et les suites. *Réciproquement*, si $(v_n)_{n\geqslant 0}$ converge vers 0, puisque $\forall n\geqslant 0$, $u_n=\frac{v_n}{1-v_n}$ $(u_n)_{n\geqslant 0}$ aussi par les mêmes aguments.
- **3.** Faux. Cex: $(n)_{n\geq 0}$ et $(-n)_{n\geq 0}$.
- **4.** Vrai. Preuve par l'absurde : si $(u_n + v_n)$ convergeait, alors la suite de terme général $v_n = u_n + v_n u_n$ convergerait aussi.
- **5.** Faux. Cex: $(-1)^n$)_{$n \ge 0$}
- 6. Faux. Cex:

$$u_n = \begin{cases} 0 & \text{si } n \text{ pair} \\ n & \text{si } n \text{ impair} \end{cases}, \ v_n = \begin{cases} 0 & \text{si } n \text{ impair} \\ n & \text{si } n \text{ pair} \end{cases}$$

- 7. Faux. L'implication \implies est vraie mais sa réciproque est fausse comme le prouve le cex : $((-1)^n n)_{n \ge 0}$.
- **8.** Faux. Cex: $(n + (-1)^n)_{n \ge 0}$.
- **9.** Faux. Cex $(n)_{n\geqslant 0}$ et $(1/n^2)_{n\geqslant 0}$.
- 10. Vrai. Si $(u_{\phi(n)})_{n\geqslant 0}$ est une suite extraite convergente de $(u_n)_{n\geqslant 0}$, alors $\forall n\in\mathbb{N},\ u_{\phi(n)}\leqslant u_n$ (car $\phi\geqslant \mathrm{id}_\mathbb{N}$). Comme une suite convergente est minorée, on en déduit que $(u_n)_{n\geqslant 0}$ est minorée donc convergente.
- 11. Vrai. Si $(u_{\phi(n)})_{n\geqslant 0}$ est une suite extraite majorée de $(u_n)_{n\geqslant 0}$, alors $\forall n\in\mathbb{N},\ u_{\phi(n)}\geqslant u_n$ (car $\phi\geqslant \mathrm{id}_\mathbb{N}$). On en déduit que $(u_n)_{n\geqslant 0}$ est majorée donc convergente.
- **12.** Faux. Cex: $\left(1 + \frac{(-1)^n}{n}\right)_{n \ge 1}$.
- 13. Vrai par la formule :

$$\forall n \in \mathbb{N}, \max(u_n, v_n) = \frac{u_n + v_n + |u_n - v_n|}{2}$$

- **14.** Faux. Cex: $\left(\frac{1+(-1)^n}{n+1}\right)_{n\geq 0}$.
- **15.** Faux. Cex :

$$u_n = \begin{cases} n & \text{si } n \text{ pair} \\ \sqrt{n} & \text{si } n \text{ impair} \end{cases}, \ v_n = \begin{cases} \sqrt{n} & \text{si } n \text{ impair} \\ n & \text{si } n \text{ pair} \end{cases}$$

- **16.** Faux : $cex (\pi n)_{n \ge 0}$.
- **17.** Faux : $cex(-1)_{n\geqslant 0}$ et $(n)_{n\geqslant 0}$.

18. Vrai. Si $(u_n)_{n\geqslant 0}$ est croissante à partir du rang n_0 , le réel $\min(u_0,\ldots,u_{n_0})$ est un minorant de $(u_n)_{n\geqslant 0}$.

Enseignements à tirer de cet exercice

- \Rightarrow Pour rechercher des contre-exemples sur les suites, il peut être utile de définir u_n selon la parité de l'indice n.
- ⇒ Attention aux idées fausses : cf. 8. et 14.

Soit $(\ell_1, \ell_2) \in \mathbb{R}^2$ tel que $u_n + \lambda v_n \xrightarrow[n \to +\infty]{} \ell_1$ et $u_n - \lambda v_n \xrightarrow[n \to +\infty]{} \ell_2$. On remarque que

$$u_n = \frac{u_n + \lambda v_n + u_n - \lambda v_n}{2} \xrightarrow[n \to +\infty]{} \frac{\ell_1 + \ell_2}{2} \text{ et } v_n = \frac{u_n + \lambda v_n - (u_n - \lambda v_n)}{2\lambda} \xrightarrow[n \to +\infty]{} \frac{\ell_1 - \ell_2}{2\lambda}$$

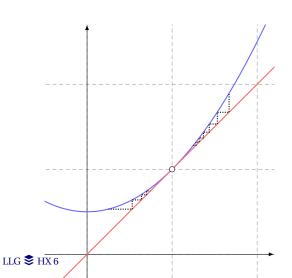
par opérations sur les limites.

On remarque que $\forall n \in \mathbb{N}, \ 0 \leqslant |u_n| \leqslant \sqrt{u_n^2 + v_n^2}$. Ainsi $u_n \xrightarrow[n \to +\infty]{} 0$ par le théorème d'encadrement. On prouve de même que $v_n \xrightarrow[n \to +\infty]{} 0$.

Voici des exemples élémentaires : $(-n)_{n\geqslant 0}$ est majorée par 0 mais non minorée, $(n)_{n\geqslant 0}$ est minorée non majorée et $((-1)^n)_{n\geqslant 0}$ n'est pas monotone.

Les suites $((-1)^n)_{n\geq 0}$ et $((-1)^n)_{n\geq 0}$ nous donnent un contre-exemple élémentaire.

On commence par une étude graphique :



Comme la fonction $f: x \mapsto \frac{x^2+1}{2}$ est définie sur \mathbb{R} , la suite est toujours définie.

Il est clair que f croît sur \mathbb{R}_+ et décroît sur \mathbb{R}_- .

On remarque que

$$\forall x \in \mathbb{R}, \, \frac{1+x^2}{2} \geqslant x$$

car $(x-1)^2 \ge 0$. Ainsi, la suite est toujours croissante.

De plus, $f(x) = x \iff x = 1$.

⇒ Cas 1 : $0 \le u_0 \le 1$. Comme [0,1] est stable par f (cf. les variations de f par exemple), $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$. Comme $(u_n)_{n \ge 0}$ est croissante, elle converge vers un réel $\ell \ge 0$ qui vérifie $f(\ell) = \ell$ par continuité de f. Ainsi $\ell = 1$ et $u_n \xrightarrow[n \to +\infty]{} 1$.

- ⇒ Cas 2 : $u_0 > 1$. Comme]1, +∞[est stable par f (cf. les variations de f par exemple), $u_n > 1$ pour tout $n \in \mathbb{N}$. Comme $(u_n)_{n \ge 0}$ est croissante, elle admet une limite $\ell \in]1, +\infty[\cup \{+\infty\}]$. Raisonnons par l'absurde en supposant que $\ell \in \mathbb{R}$. On aurait alors $f(\ell) = \ell$ par continuité de f, d'où $\ell = 1$, ce qui est absurde. Ainsi $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- \Rightarrow Cas 3: $u_0 < -1$. On a alors $u_1 > 1$ et on est ramené au cas 2: $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- \Rightarrow Cas 4: $-1 \leqslant u_0 < 0$. On a alors $0 \leqslant u_1 \leqslant 1$ et on est ramené au cas 1: $u_n \xrightarrow[n \to +\infty]{} 1$.

On pose, pour tout x dans \mathbb{R}_+ , $f(x) = \frac{x}{1+x^3}$.

- \Rightarrow Comme $f(\mathbb{R}_+) \subset \mathbb{R}_+$ et $u_0 \in \mathbb{R}_+$, la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie et à valeurs dans \mathbb{R}_+ .
- \Rightarrow Pour tout $n \in \mathbb{N}$, on a $u_{n+1} = \frac{u_n}{1 + u_n^3} \leqslant u_n$ car $u_n \in \mathbb{R}_+$.
- \Rightarrow Comme $(u_n)_{n\in\mathbb{N}}$ est décroissante minorée par 0, elle converge vers un réel ℓ positif.
- \Rightarrow Comme f est continue, on a $f(u_n) \xrightarrow[n \to +\infty]{} f(\ell)$. Ansi $\ell = f(\ell)$, d'où $\ell = 0$ après tout calcul.

8 5

- \Rightarrow Cas 1: $\beta > 0$. On a alors $u_n = \frac{n^{\alpha}}{1+n^{\beta}} \sim \frac{n^{\alpha}}{n^{\beta}} = n^{\alpha-\beta}$.
- \Rightarrow Cas 2: β < 0. On a alors $u_n = \frac{n^{\alpha}}{1+n^{\beta}} \sim n^{\alpha}$.
- \Rightarrow Cas 3 : β = 0. On a alors $u_n = \frac{n^{\alpha}}{2}$.

9 5

- 1. Soit $n \in \mathbb{N}$. La fonction f_n est continue et strictement croissante sur \mathbb{R}_+ (en tant que somme des deux fonctions $x \mapsto x^n$ croissante et $x \mapsto 6x-1$ strictement croissante sur \mathbb{R}_+). Comme $f_n(0) = -1$ et $f_n(1/6) > 0$, on déduit du théorème des valeurs intermédiaires qu'il existe x_n dans $\left[0, \frac{1}{6}\right]$ tel que $f_n(x_n) = 0$. L'unicité de x_n provient de la stricte croissance de f_n .
- **2.** Soit $n \in \mathbb{N}$. Sur $\left[0, \frac{1}{6}\right]$, on a $f_{n+1}(x) \leqslant f_n(x)$ d'où $f_n(x_{n+1}) \geqslant 0$. Comme f_n est strictement croissante et s'annule en x_n , on en déduit que $x_{n+1} \geqslant x_n$. La suite $(x_n)_{n\geqslant 0}$ est donc convergente car décroissante et majorée par $\frac{1}{6}$.
- **3.** Pour tout $n \in \mathbb{N}$, on a $0 \leqslant x_n \leqslant 6^{-n}$ donc $x_n^n \xrightarrow[n \to +\infty]{} 0$. On en déduit que $x_n = \frac{1 x_n^n}{6} \xrightarrow[n \to +\infty]{} \frac{1}{6}$.

10 5

- **1.** La suite de terme général $v_n := \frac{2^n}{5}$ convient clairement.
- **2.** La suite $(w_n)_{n\in\mathbb{N}}$ est géométrique de raison -3 d'où $\forall n\in\mathbb{N},\ w_n=(-3)^nw_0=(-3)^n\left(u_0-\frac{1}{5}\right)$.
- **3.** ⇒ Comme $\forall n \in \mathbb{N}$, $u_n = \frac{2^n}{5} + (-3)^n \left(u_0 \frac{1}{5} \right)$ et |2| < |-3| avec $u_0 \frac{1}{5} \neq 0$, on a $u_n \sim \left(u_0 \frac{1}{5} \right) (-3)^n$.
 - \Rightarrow On a donc $u_{n+1}-u_n=2^n-4u_n$ pour tout $n\in\mathbb{N}$. Puisque $2^n=o((-3)^n)$, on déduit de la question précédente que $u_{n+1}-u_n\sim -4\left(u_0-\frac{1}{5}\right)(-3)^n$.
- **4.** \Rightarrow Cas 1 : $u_0 = \frac{1}{5}$. On a alors $u_n = \frac{2^n}{5}$ pour tout $n \in \mathbb{N}$ donc $(u_n)_{n \in \mathbb{N}}$ est croissante.
 - \Rightarrow Cas 2 : $u_0 \neq \frac{1}{5}$. Par la question précédente, $u_{n+1} u_n$ est du signe de $-4\left(u_0 \frac{1}{5}\right)(-3)^n$ APCR. Comme cette expression est de signe alterné, $(u_n)_{n \in \mathbb{N}}$ n'est pas monotone.

Ainsi $\{u_0; (u_n)_{n \in \mathbb{N}} \text{ est monotone}\} = \{\frac{1}{5}\}.$

Supposons $(u_n)_{n\geqslant 0}$ croissante. Posons $v_n=\frac{1}{n+1}(u_0+u_1+\cdots+u_n)$. Soit $n\in\mathbb{N}$. On vérifie que

$$(n+2)(v_{n+1}-v_n)=u_{n+1}-v_n$$

Puisque $(u_n)_{n\in\mathbb{N}}$ est croissante, on a

$$v_n = \frac{1}{n+1} (u_0 + u_1 + \dots + u_n) \leqslant \frac{(n+1)u_{n+1}}{n+1}$$

et donc $v_{n+1} - v_n \ge 0$. Ainsi (v_n) est croissante. Si (u_n) est décroissante, on applique ce qui précède à $(-u_n)_{n \in \mathbb{N}}$ qui est croissante pour conclure.

12

- \Rightarrow Cas 1: $\alpha > 0$. On a alors $\ln u_n \sim \frac{\lambda n^{\beta}}{n^{\alpha}} = \lambda n^{\beta \alpha}$.
 - **σ** Cas 1.1 : $\beta > \alpha$. On a ln $u_n \xrightarrow[n \to +\infty]{} +\infty$ d'où $u_n \xrightarrow[n \to +\infty]{} +\infty$.

 - **o** Cas 1.3 : $\beta = \alpha$. On a ln $u_n \xrightarrow[n \to +\infty]{} \lambda$ d'où $u_n \xrightarrow[n \to +\infty]{} e^{\lambda}$.
- $\Rightarrow \operatorname{Cas} 2: \alpha < 0. \operatorname{On a alors} \ln \left(1 + \frac{\lambda}{n^{\alpha}} \right) = -\alpha \ln n + \ln (\lambda + n^{\alpha}). \operatorname{Comme} \ln (\lambda + n^{\alpha}) \xrightarrow[n \to +\infty]{} \ln \lambda \operatorname{et} -\alpha \ln n \xrightarrow[n \to +\infty]{} +\infty \operatorname{d'où} \ln u_n \sim -\alpha n^{\beta} \ln n.$
 - \bullet Cas 2.1 : $\beta \geqslant 0$. On a $\ln u_n \xrightarrow[n \to +\infty]{} +\infty$ d'où $u_n \xrightarrow[n \to +\infty]{} +\infty$.
 - **o** Cas 2.2 : β < 0. On a ln $u_n \xrightarrow[n \to +\infty]{} 0$ d'où $u_n \xrightarrow[n \to +\infty]{} 1$.
- \Rightarrow Cas 3 : $\alpha = 0$. On a alors $u_n = \frac{n^{\alpha}}{2}$.

Supposons que $(u_n)_{n\geqslant 0}$ est monotone et $\frac{u_0+\cdots+u_n}{n} \xrightarrow[n\to+\infty]{} \ell \in \overline{\mathbb{R}}$. Comme $(u_n)_{n\geqslant 0}$ est monotone, on a $u_n \xrightarrow[n\to+\infty]{} \ell' \in \mathbb{R} \cup \{-\infty, +\infty\}$. On déduit alors du théorème de Césaro que $\ell = \ell'$.

1. Par une factorisation par l'angle moitié, on obtient :

$$e^{u_n} + e^{v_n} = e^{\frac{u_n + v_n}{2}} \left(e^{\theta_n} + e^{-\theta_n} \right)$$

d'où
$$e^{\theta_n} + e^{-\theta_n} = e^{-\frac{u_n + v_n}{2}} (e^{u_n} + e^{v_n}) \xrightarrow[n \to +\infty]{} 2.$$

2. Pour $n \in \mathbb{N}$, notons $c_n := e^{\theta_n} + e^{-\theta_n}$. Comme $\left(e^{\theta_n}\right)^2 - c_n e^{\theta_n} + 1 = 0$, e^{θ_n} est une racine réelle du trinôme $X^2 - c_n X + 1$. Le discriminant de celui-ci $\Delta := c_n^2 - 4$ est donc positif et les racines du trinôme valent $\frac{c_n \pm \sqrt{c_n^2 - 4}}{2}$. Comme $\frac{c_n \pm \sqrt{c_n^2 - 4}}{2} \xrightarrow[n \to \infty]{} 1$, on a $e^{\theta_n} \xrightarrow[n \to +\infty]{} 1$ par le théorème d'encadrement d'où $\theta_n \xrightarrow[n \to +\infty]{} 0$. Ainsi $u_n = \frac{u_n + v_n}{2} + \theta_n \xrightarrow[n \to +\infty]{} 0$ et $v_n = \frac{u_n + v_n}{2} - \theta_n \xrightarrow[n \to +\infty]{} 0$.

- 1. Pour tout entier naturel n, notons $f_n: x \mapsto x^5 + nx 1$. La fonction f_0 ne s'annulle qu'au point $u_0 = 1$. Pour tout entier n non nul, la fonction f_n est dérivable sur $\mathbb R$ en tant que fonction polynomiale et $\forall x \in \mathbb R$, $f'_n(x) = 5x^4 + n > 0$. Comme $f_n(x) \xrightarrow[x \to \pm \infty]{} \pm \infty$, f_n réalise une bijection strictement croissante de $\mathbb R$ sur $\mathbb R$. Ainsi, il existe un unique $u_n \in \mathbb R$ tel que $f_n(u_n) = 0$.
- **2.** Pour tout entier naturel, on a vu que $u_n > 0$. De plus, $1 nu_n = u_n^5 > 0$ d'où $0 < u_n < 1/n$ et, par encadrement, $u_n \xrightarrow[n \to +\infty]{} 0$. Comme $1 nu_n = u_n^5 \xrightarrow[n \to +\infty]{} 0$, on a $nu_n \xrightarrow[n \to +\infty]{} 1$ d'où $u_n \sim \frac{1}{n}$.

16 5

Pour $n \in \mathbb{N}^*$, on a $\ln u_n = n \ln \frac{1-e^{-2n}}{1+e^{-2n}} = n \ln \left(1-e^{-2n}\right) - n \ln \left(1+e^{-2n}\right)$. Comme $e^{-2n} \xrightarrow[n \to +\infty]{} 0$, on a $n \ln \left(1+\varepsilon e^{-2n}\right) \sim \varepsilon n e^{-2n}$ (où $\varepsilon = \pm 1$). Par croissances comparées, $n e^{-2n} \xrightarrow[n \to +\infty]{} 0$ d'où $\ln u_n \xrightarrow[n \to +\infty]{} 0$ et $u_n \xrightarrow[n \to +\infty]{} 1$ par continuité de l'exponentielle en 0.

Notons U := $\{u_n; n \in \mathbb{N}\}\$ et V := $\{v_n; n \in \mathbb{N}\}\$.

- **1.** Soit $k \in \mathbb{N}$. Comme u_k est un minorant de V, on a $u_k \leq \inf V$. Ainsi $\inf V$ est un majorant de U d'où sup $U \leq \inf V$.
- 2. a. On reprend les notations de la question précédente.
 - \Rightarrow Tout minorant de U est aussi un minorant de V. Le plus grand minorant de U est donc un minorant de V : ainsi inf U \leq inf V.

 \Rightarrow Tout majorant de V est aussi un majorant de U. Le plus petit majorant de V est donc un majorant de U : ainsi sup U \leq sup V.

- **b.** Il suffit de choisir $u_n = 0$ et $v_n = 1$ pour tout $n \in \mathbb{N}$.
- **c.** Il suffit de choisir $u_0 = -2$ et $v_0 = -1$, puis $u_n = 0$ et $v_n = 1$ pour tout $n \in \mathbb{N}^*$.

1. Soit $n \in \mathbb{N}^*$. On a :

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{n+1} \binom{2n+2}{n+1}}{4\sqrt{n} \binom{2n}{n}} = \sqrt{\frac{n+1}{n}} \frac{2n+1}{2(n+1)} = \frac{2n+1}{2\sqrt{n(n+1)}}$$

Comme $(2n+1)^2 = 4n^2 + 4n + 1 \ge 4n(n+1)$, on a $2n+1 \ge 2\sqrt{n(n+1)}$ d'où $\frac{u_{n+1}}{u_n} \ge 1$. Ainsi $(u_n)_{n \ge 1}$ est croissante.

- **2.** On note $\mathscr{P}(n)$ l'inégalité $u_n \leqslant \sqrt{\frac{n}{2n+1}}$
 - \Rightarrow $\mathscr{P}(1)$ est vraie car $u_1 = \frac{1}{2} \leqslant \sqrt{\frac{1}{3}}$ (puisque $\frac{1}{4} \leqslant \frac{1}{3}$).
 - \Rightarrow Supposons $\mathscr{P}(n)$ vraie pour un $n \geqslant 1$ fixé. En utilisant l'expression de $\frac{u_{n+1}}{u_n}$ calculée à la question précédente, on a $u_{n+1} = \frac{2n+1}{2\sqrt{n(n+1)}}u_n$, donc

$$u_{n+1} \leqslant \frac{2n+1}{2\sqrt{n(n+1)}} \sqrt{\frac{n}{2n+1}} = \frac{1}{2} \sqrt{\frac{2n+1}{n+1}}$$

Pour en déduire $\mathscr{P}(n+1)$, il suffit alors de montrer que $\frac{1}{2}\sqrt{\frac{2n+1}{n+1}} \leqslant \sqrt{\frac{n+1}{2n+3}}$. Or cette inégalité est équivalente à $(2n+3)(2n+1) \leqslant 4(n+1)^2$, et cette dernière inégalité est vraie car $(2n+3)(2n+1)-4(n+1)^2=4n^2+8n+3-(4n^2+8n+4)=-1$.

On a ainsi démontré par récurrence que $\mathcal{P}(n)$ est vraie pour tout entier $n \ge 1$.

3. Puisque $\frac{n}{2n+1} \leqslant \frac{1}{2}$, on déduit de la question précédente que $u_n \leqslant \frac{1}{\sqrt{2}}$ pour tour $n \geqslant 1$. Ainsi la suite $(u_n)_{n\geqslant 1}$ est majorée, et comme on a déjà montré qu'elle est croissante, elle est convergente. Notons ℓ sa limite. Puisque pour tout $n \in \mathbb{N}^*$, on a $u_1 = \frac{1}{2} \leqslant u_n \leqslant \frac{1}{\sqrt{2}}$, en passant à la limite dans cet encadrement on obtient $\frac{1}{2} \leqslant \ell \leqslant \frac{1}{\sqrt{2}}$.