Les inégalités sont au fondement de l'analyse. Il est essentiel de savoir les manipuler avec dextérité.

Tempête de neige en mer, Turner

1	Nombres reels		1
	1	Quizz	2
	2	Exercices élémentaires	4
	3	Exercices classiques plus techniques	5
	4	Indications	7
	5	Solutions	Ç

1. Quizz

QCM sur les superpositions d'inégalités

Soit a et b des réels tels que -1 < a < 2 et $2 \le b < 4$. On a :

a.
$$-5 < a - b < 0$$
; **c.** $-2 < ab < 8$;

c.
$$-2 < ab < 8$$
;

e.
$$0 \le \left| \frac{a}{b} \right| < 1$$
;

g.
$$1 < a^2 < 4$$
;

b.
$$-3 < a - b < -2$$
; **d.** $-4 < ab < 8$;

d.
$$-4 < ab < 8$$
;

f.
$$\frac{1}{2} < \left| \frac{a}{b} \right| < 1$$
;

h.
$$-1 < a^3 < 8$$
.

----- Vrai ou faux ? f

1.
$$\forall (x, y) \in \mathbb{R}^2_+, \ x \leqslant y \implies x \leqslant \sqrt{xy} \leqslant y.$$

3.
$$\forall x \in \mathbb{R}, \ x(1-x) \leqslant \frac{1}{4}$$

2.
$$\forall (x, y) \in [1, +\infty[, e^x + e^y \le e^{x+y}].$$

4.
$$\forall x \in \mathbb{R}_{+}^{*}, x + \frac{1}{x} \geqslant 2;$$

5.
$$\forall (a, b, u, v) \in \mathbb{R}^4$$
, $|u| \le 1 \land |v| \le 1 \implies |ua + vb| \le |a + b|$.

6.
$$\forall (a, b, u, v) \in \mathbb{R}^4, |u| \le 1 \land |v| \le 1 \implies |ua + vb| \le |a| + |b|.$$

7.
$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{2n} x^i > 0.$$

9.
$$\forall (a,b) \in \mathbb{R}^2_+, \ \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}.$$

8.
$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{n} x^i > 0.$$

10.
$$\forall x \in \mathbb{R}_+^*, \ \forall (n,m) \in \mathbb{N}^2, \ x^n \leq x^{n+m} + 1.$$

11. Pour tout
$$x$$
 réel, $\cos x \geqslant 1 - \frac{x^2}{2}$.

12.
$$\forall x \in \mathbb{R}_+$$
, $|\sin x| \leqslant \sqrt{x}$. On admettra que $\forall x \in \mathbb{R}$, $|\sin x| \leqslant |x|$.

13. Pour tous
$$(a, b) \in \mathbb{R}^2$$
 et $n \in \mathbb{N}$, $a^{2n} \leq b^{2n} \iff |a| \leq |b|$.

14. Pour tout
$$x \in \mathbb{R}^*$$
 et $a \in \mathbb{R}^*_+$, $e^{-1/x} < e^{-a} \iff x < \frac{1}{a}$.

————— QCM sur les équations et inéquations f —

- 1. L'ensemble des solutions de $x^4 x > 0$ est :
 - **a.**]0,1[;
- **b.** $]-\infty,0[\cup]1,+\infty[;$
- **c.** $]1,+\infty[.$

- **2.** L'ensemble des solutions de $\sqrt{x^2 + 2x} < x + 1$ est :
 - **a.** $[0, +\infty[;$

- **b.** $]-\infty,-2] \cup [0,+\infty[$;
- **c.** [-2,0].

- **3.** L'ensemble des solutions de $|x^2-3| < 2$ est :

 - **a.** $|1,\sqrt{5}[$; **b.** $|-\sqrt{5},-1[\cup]1,\sqrt{5}[$.
- **4.** Pour $x \in \mathbb{R}$ tel que $|x-2| \leqslant \frac{1}{4}$, on a :

a.
$$\left| 1 - \frac{x}{2} \right| \leqslant \frac{1}{8}$$

a.
$$\left| 1 - \frac{x}{2} \right| \le \frac{1}{8};$$
 b. $\left| 1 - \frac{2}{x} \right| \le \frac{1}{7};$ **c.** $\frac{1}{x^2} \ge \frac{1}{2};$

c.
$$\frac{1}{x^2} \geqslant \frac{1}{2}$$
;

d.
$$|x^2-4| \leq \frac{17}{16}$$

5. L'ensemble des solutions de $x + \frac{1}{r} > -1$ est :

a.
$$\mathbb{R}_+^*$$

b.]
$$-1, +\infty$$
[

a.
$$\mathbb{R}_{+}^{*}$$
; **b.** $]-1,+\infty[$; **c.** $]-1,0[\cup]0,1[$.

6. L'ensemble des solutions de $x + \frac{1}{x} > -3$ est :

a.
$$\left| -\frac{3+\sqrt{5}}{2}, 0 \right|$$
;

b.
$$\left| -\frac{3+\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2} \right| \cup]0, +\infty[.$$

7. L'ensemble des solutions de $|x-1|+|x-2|\geqslant 5$ est :

a.
$$]-\infty,-1];$$

b.
$$[4, +\infty[;$$

c.
$$]-\infty,-1] \cup [4,+\infty[.$$

8. L'ensemble des solutions de $\sqrt{2x-1} + \sqrt{x-1} \ge 5$ est :

a.
$$[4, +\infty[;$$
 b. $[2, +\infty[;$

b.
$$[2, +\infty[$$

c.
$$[5, +\infty[$$
.

9. L'ensemble des solutions de $\lfloor 3x - 1 \rfloor = \lfloor x + 1 \rfloor$ est :

a.
$$\left[\frac{2}{3}, 1\right]$$
;

a.
$$\left[\frac{2}{3}, 1\right];$$
 b. $\left[\frac{2}{3}, \frac{4}{3}\right];$

d.
$$\left]1, \frac{4}{3}\right]$$
.

10. L'ensemble des solutions de $\left| \sqrt{x^2 + 1} \right| = 2$ est :

a.
$$]-2\sqrt{2},-\sqrt{3}] \cup [\sqrt{3},2\sqrt{2}];$$
 b. $[-2\sqrt{2},-\sqrt{3}] \cup [\sqrt{3},2\sqrt{2}];$ **c.** $[\sqrt{3},2\sqrt{2}].$

b.
$$\left[-2\sqrt{2}, -\sqrt{3} \right] \cup \left[\sqrt{3}, 2\sqrt{2} \right];$$

c.
$$[\sqrt{3}, 2\sqrt{2}].$$

 $lackbox{QCM sur les bornes supérieures }f$

1. On pose A = $\left\{ \frac{n+2m}{n+m}; (n,m) \in \mathbb{N}^2 \setminus \{(0,0)\} \right\}$. Vrai ou faux ?

a. A est borné;

b. $\max A = 2$;

c. $\min A = 0$.

2. Pour a et b strictement positifs, on pose $A = \left\{ a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^* \right\}$. Vrai ou faux ?

a. A est borné;

b. sup A = a + b;

c. min A = a - b.

3. On pose A = $\left\{ \frac{nm}{n^2 + m^2}; (n, m) \in \mathbb{N}^2 \setminus \{(0, 0)\} \right\}$. Vrai ou faux ?

a. A est borné;

b. $\max A = 1$;

c. $\min A = 0$.

———— QCM sur l'inégalité de Cauchy-Schwarz f ————

Soit $n \in \mathbb{N}^*$ et $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}_+$.

a.
$$\sum_{i=1}^{n} a_i \leqslant \sqrt{n \sum_{i=1}^{n} a_i^2}$$
;

b.
$$\sum_{i=1}^{n} a_i \leqslant \sqrt{\sum_{i=1}^{n} a_i^{2/3} \sum_{i=1}^{n} a_i^{4/3}};$$
 c. $\sum_{i=1}^{n} a_i \leqslant n \sqrt{\sum_{i=1}^{n} \frac{a_i^2}{i}}.$

$$\mathbf{c.} \sum_{i=1}^n a_i \leqslant n \sqrt{\sum_{i=1}^n \frac{a_i^2}{i}}.$$

2. Exercices élémentaires

———— Une équation avec partie entière

Résoudre l'équation $\left| \frac{x}{1-3x} \right| = 2$.

Soit x et y dans] – 1,1[. Démontrer que $\left| \frac{x+y}{1+xy} \right| \le 1$.

——— Une majoration —

Montrer que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k\sqrt{k} \leqslant \frac{n(n+1)}{2\sqrt{3}}\sqrt{2n+1}$ (sans récurrence).

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels bornées.

- **1.** On suppose dans cette question que $\forall (k,\ell) \in \mathbb{N}^2$, $u_k \leqslant v_\ell$. Comparer $\sup_{k \in \mathbb{N}} u_k$ et $\inf_{\ell \in \mathbb{N}} v_\ell$.
- **2.** On suppose dans cette question que $\forall k \in \mathbb{N}$, $u_k \leqslant v_k$.
 - **a.** Démontrer que $\inf_{\ell \in \mathbb{N}} u_{\ell} \leqslant \inf_{\ell \in \mathbb{N}} v_{\ell}$ et $\sup_{\ell \in \mathbb{N}} u_{\ell} \leqslant \sup_{\ell \in \mathbb{N}} v_{\ell}$.
 - **b.** Donner un exemple de suites pour lesquelles $\sup_{\ell \in \mathbb{N}} u_{\ell} < \inf_{\ell \in \mathbb{N}} v_{\ell}$.
 - **c.** Même question avec $\sup_{\ell \in \mathbb{N}} u_{\ell} > \inf_{\ell \in \mathbb{N}} v_{\ell}$.

Soit $a \in \mathbb{R}$. Résoudre l'inéquation $\sqrt{x^2 + 1} \le x - a$ d'inconnue x réelle.

Soit a et b dans \mathbb{R}_+ . En appliquant l'inégalité de Cauchy-Schwarz, établir que $(a+b)^4 \leqslant 8(a^4+b^4)$.

Sinus f ———

Soit $\alpha \in \mathbb{R}$. Démontrer que $\forall n \in \mathbb{N}$, $|\sin n\alpha| \leq n |\sin \alpha|$.

3. Exercices classiques plus techniques

Soit a et b deux nombres réels. Établir l'inégalité $a + b < (1 + a^2)(1 + b^2)$ en :

- a. appliquant l'inégalité de Cauchy-Schwarz;
- **b.** écrivant sous forme canonique $(1 + a^2)(1 + b^2) a b$.

14 $\circ \bullet$ — Majoration d'un polynôme à coefficients positifs f — —

Soit $n \in \mathbb{N}$ et $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}_+$. Justifier que $\forall t \in [0,1[$, $\sum_{k=0}^n a_k t^k \leqslant \frac{\sqrt{a_0^2 + \dots + a_n^2}}{\sqrt{1-t^2}}$.

Soit $n \in \mathbb{N}^*$ et $a_1, ..., a_n$ dans \mathbb{R}_+^* . L'objectif est d'établir que $\sum_{k=1}^n \frac{k}{a_1 + \cdots + a_k} \leqslant 2 \sum_{k=1}^n \frac{1}{a_k}$.

- **1.** Montrer que, pour tout $k \in [1, n]$, $\left(\sum_{i=1}^k a_i\right) \left(\sum_{i=1}^k \frac{i^2}{a_i}\right) \geqslant \frac{k^2(k+1)^2}{4}$.
- **2.** En déduire que $\sum_{k=1}^{n} \frac{k}{a_1 + \dots + a_k} \le 4 \sum_{k=1}^{n} \frac{i^2}{a_k} \sum_{k=1}^{n} \frac{1}{k(k+1)^2}$.
- **3.** Établir que $\forall k \in \mathbb{N}^*$, $\frac{2}{k(k+1)^2} \leqslant \frac{1}{k^2} \frac{1}{(k+1)^2}$ puis conclure.

Soit $n \in \mathbb{N}^*$.

- 1. Démontrer que $\sum_{n=1}^{\infty} \cos^2 k = \frac{n}{2} + \frac{(\sin n) \cos(n+1)}{2 \sin 1}$. INDICATION : Linéariser \cos^2 .
- **2.** En déduire que $\sum_{k=1}^{n} |\cos k| \geqslant \frac{n}{2} \frac{1}{\sqrt{2}}$ INDICATION : Comparer x et x^2 pour $x \in [0,1]$.

————— Une somme de valeurs absolues ff -

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $\phi_n(x) := \sum_{k=0}^n |x - k|$.

- **1.** Simplifier $\phi_n(x)$ pour $x \in \mathbb{R}_-$ puis pour $x \ge n$.
- **2.** Soit $\ell \in [0, n-1]$. Simplifier $\phi_n(x)$ pour $x \in [\ell, \ell+1]$.
- **3.** En déduire l'existence et la valeur de $\mu := \min_{x \in \mathbb{R}} \phi_n(x)$. Indication : Discuter selon la parité de n.

LLG **♦** HX 6

2025-2026

4. Indications

Seules a, d, e, et h sont vraies.

2 5

Aux 10. et 11., utiliser la formule des sommes géométriques.

3 5

Attention aux multiplications membre à membre dans une inégalité.

<u>4</u> ්

L'ensemble A est borné dans les trois cas.

5 5

Tout est vrai. Il faut à chaque fois trouver une décomposition $a_i = x_i y_i$ adaptée.

6 5

L'équation équivaut à $2 \le \frac{x}{1-3x} < 3$.

7 5

Il s'agit de démontrer que $-1 \leqslant \frac{x+y}{1+xy} \leqslant 1$.

8 5

Se souvenir que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Poser U := $\{u_n; n \in \mathbb{N}\}$ et V := $\{v_n; n \in \mathbb{N}\}$ afin d'alléger la rédaction. On rappelle que $m \le \inf U$ équivaut à m est un minorant de U et sup $U \le M$ à M est un majorant de U.

<u>10</u> ්

L'inéquation est équivalente à $x \ge a$ et $x^2 + 1 \le (x - a)^2$.

C 11

Remarquer que $a + b = 1 \times a + 1 \times b$ (le one-trick).

Laurent Kaczmarek

12

C

Raisonner par récurrence afin d'exploiter les formules d'additions.

13 5

Au a., effectuer un one-trick $a+b=1\times a+b\times 1$ afin de faire apparaître $\sqrt{1^2+b^2}\sqrt{a^2+1^2}$.

14 [']

La présence de $\sqrt{a_0^2+\cdots+a_n^2}$ nous oriente vers l'inégalité de Cauchy-Schwarz.

15 [']

Appliquer l'inégalité de Cauchy-Schwarz au 1. Au 2., déduire du 1. une majoration de $\frac{k}{a_1 + \cdots + a_k}$. Pour conclure au 3., intervertir les sommes dans la somme double.

<u>16</u> ්

On a $|\cos k| \ge (\cos k)^2$ pour tout $k \in \mathbb{N}$.

17 [']

Au 2., on trouve $(2\ell + 1 - n)x - \frac{\ell(\ell+1) - (n-\ell)(\ell+n+1)}{2}$.

5. Solutions

1 :

Seules a, d, e, et h sont vraies.

a. Comme -1 < a < 2 et $-4 < -b \le -2$, on obtient -5 < a - b < 0 par superposition des inégalités.

b. Les réels a = 0 et b = 3,9 sont un cex.

c. Les réels a = -0.9 et b = 3.9 sont un cex.

d. Si $a \ge 0$, alors $0 \le ab < 8$. Si -1 < a < 0, alors ab < 0 et |ab| < 4 d'où -4 < ab < 0.

e. On a |a| < 2 et $\left| \frac{1}{b} \right| < \frac{1}{2}$ d'où $0 \le \left| \frac{a}{b} \right| < 1$.

f. L'inégalité est clairement fausse si par exemple a = 0.

g. L'inégalité est clairement fausse si par exemple a = 0.

h. L'inégalité est vraie par stricte croissance sur \mathbb{R} de $x \mapsto x^3$.

Enseignements à tirer de cet exercice

On ne peut pas retrancher membre à membre des inégalités : pou encadrer a-b, on en encadre a et -b puis on superpose par addition ces deux inégalités. On ne peut faire le produit membre à membre de deux inégalités sauf si tous les nombres en jeu sont positifs. Pour encadrer ab, on commence par faire des disjonctions sur les signes de a et b. Dans le cas où ab > 0, il suffit d'encadrer |ab| pour conclure (on se ramène à des termes positifs afin de multiplier membre à membre).

2

2. Vrai car pour $x \ge 1$ et $y \ge 1$,

$$e^{x+y} - e^y = e^y(e^x - 1) \ge e(e^x - 1)$$

et
$$e(e^x - 1)e^{-x} = e(1 - e^{-x}) \ge e(1 - e^{-1}) = e - 1 > 1$$
.

3. Vrai. Par exemple : $x(1-x) - \frac{1}{4} = -(x - \frac{1}{2})^2$.

4. Vrai car
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 \geqslant 0$$
.

5. Faux. Cex: (a, b, u, v) = (2, -2, 1, -1).

6. Vrai par l'inégalité triangulaire.

7. Vrai. Pour $x \neq 1$, $\sum_{i=0}^{2n} x^i = \frac{x^{2n+1}-1}{x-1}$ et $x^{2n+1} > 1 \iff x > 1$ (car $x \mapsto x^{2n+1}$ est strictement croissante sur \mathbb{R}).

8. Faux : cex (n, x) = (1, -2).

9. Vrai : élever au carré.

- **10.** Vrai. Si $x \ge 1$, alors $x^n \le x^{n+m} \le x^{n+m} + 1$. Sinon, on a $x^n \le 1 \le 1 + x^{n+m}$.
- 11. Vrai : étudier les variations de $x \mapsto \cos(x) 1 + x^2/2$ en dérivant deux fois.
- **12.** Vrai. On a $|\sin x| \le 1 \le \sqrt{x}$ si $x \ge 1$ et si $x \in]0,1]$, on a $\left|\frac{\sin x}{\sqrt{x}}\right| \le \frac{x}{\sqrt{x}} = \sqrt{x}$, inégalité clairement vérifiée en 0.

Enseignements à tirer de cet exercice

La disjonction est naturelle car le cas où $x \ge 1$ est direct. Pour l'autre inégalité, la relation $|\sin x| \le x$ pour $x \ge 0$ permet de conclure sans calcul.

- **13.** Vrai car $x \mapsto x^{2n}$ est strictement croissante sur \mathbb{R}_+ .
- 14. Faux : a < 1/x n'est pas équivalent à x < 1/a mais à 0 < x < 1/a.

- 1. La bonne réponse est b. car $x^4 x = x(x^3 1)$ et $x^3 1$ est du signe de x 1 car $x \mapsto x^3$ est strictement croissante sur \mathbb{R} .
- **2.** Seule a. est correcte. L'inéquation est définie sur $]-\infty,-2] \cup [0,+\infty[$. On conclut en remarquant que l'inéquation est équivalente à $x+1 \ge 0$ et $(x+1)^2 > x^2 + 2x$.
- **3.** La bonne réponse est b. car l'inéquation équivaut à $1 < x^2 < 5$.
- **4.** Tout est vrai sauf c. En effet, $\sqrt{2} < 9/4$ et on a $\frac{7}{4} \le |x|$ et $|x+2| \le |x-2| + 4$ (inég. triangulaire) d'où

$$\left| \frac{x}{2} - 1 \right| = \frac{|x - 2|}{2} \leqslant \frac{1}{4}, \qquad \left| 1 - \frac{2}{x} \right| = \frac{|x - 2|}{|x|} \leqslant \frac{1}{4} \times \frac{4}{7}, \qquad |(x - 2)(x + 2)| \leqslant \frac{1}{4} \times \left(4 + \frac{1}{4}\right) = \frac{17}{16}$$

- **5.** La bonne réponse est a. car l'inéquation équivaut à $\frac{x^2 + x + 1}{x} > 0$, ie x > 0 car le trinôme au numérateur est toujours positif.
- **6.** La bonne réponse est b. car l'inéquation est équivalente à $\frac{x^2 + 3x + 1}{x} > 0$.
- 7. On effectue un disjonction de cas selon les signes de x-1 et x-2: on trouve c.
- **8.** Seul le c. est correct. On remarque que l'expression du premier membre est strictement croissante et vaut 1 en x = 5.
- **9.** On trouve b. L'équation équivaut à $\lfloor 3x \rfloor = \lfloor x \rfloor + 2$. En écrivant $x = \lfloor x \rfloor + \theta$, ceci est aussi équivalent à $\lfloor x \rfloor = 1 \frac{1}{2} \lfloor 3\theta \rfloor$. On en déduit que nécessairement $\lfloor x \rfloor = 0$ ou 1 et une synthèse permet de conclure.
- **10.** On trouve a. car l'équation équivaut à $2 \le \sqrt{x^2 + 1} < 3$.

1. Seuls a. et b. sont vrais. On a en effet $A \subset]0,2]$ et $2 = \frac{0+2}{0+1}$. En revanche, il est vrai que inf A = 0.

2. Seuls a. et c. sont vrais. En effet, $a-b \le a+(-1)^n \frac{b}{n} \le a+\frac{b}{2}$ pour tout $n \in \mathbb{N}$ avec $a-b \in A$.

3. Seul a. est vrai. L'ensemble A est borné car $A \subset]0,1[$ et puisqu'il est non vide, A admet des bornes. Par l'inégalité AG, on a $nm \leqslant \frac{n^2+m^2}{2}$, on en déduit que $\frac{1}{2}$ est un majorant de A et puisque $\frac{1}{2} \in A$, A admet un maximum qui vaut $\frac{1}{2} \cdot$ On remarque que 0 est un minorant de A et que la suite de terme général $\frac{n}{n^2+1}$ converge vers 0 et est à valeurs dans A. On en déduit que infA = 0. Comme $0 \not\in A$, cette borne inférieure n'est pas un minimum.

Les trois inégalités sont vraies et sont des applications de l'inégalité de Cauchy-Schwarz. Le a. utilise « the 1-trick » et le b. un « ré-équilibrage » :

$$\sum_{i=1}^{n} a_i \times 1 \leqslant \sqrt{\sum_{i=1}^{n} 1^2} \sqrt{\sum_{i=1}^{n} a_i^2} \quad \text{et} \quad \sum_{i=1}^{n} a_i^{1/3} \times a_i^{2/3} \leqslant \sqrt{\sum_{i=1}^{n} a_i^{2/3}} \sqrt{\sum_{i=1}^{n} a_i^{4/3}}$$

Le c. s'obtient par la décomposition $a_i = \sqrt{i} \times \frac{a_i}{\sqrt{i}}$:

$$\sum_{i=1}^n a_i \leqslant \sqrt{\sum_{i=1}^n i} \sqrt{\sum_{i=1}^n \frac{a_i^2}{i}} \leqslant n \sqrt{\sum_{i=1}^n \frac{a_i^2}{i}}$$

 $\operatorname{car} \sum_{i=1}^{n} i \leqslant n^2$ et par croissance de la racine carrée.

L'équation équivaut à $2 \le \frac{x}{1-3x} < 3$, i.e. $\frac{x-2(1-3x)}{1-3x} \ge 0$ et $\frac{3(1-3x)-x}{1-3x} > 0$. On trouve $\left[\frac{2}{7}, \frac{3}{10}\right]$.

$$\Rightarrow$$
 On a $\frac{x+y}{1+xy} - 1 = \frac{x+y-xy-1}{1+xy} = \frac{x-1-y(x-1)}{1+xy} = \frac{(x-1)(1-y)}{1+xy} \le 0$ car $1+xy > 0$, $x-1 < 0$ et $1-y > 0$.

 \implies De même, $\frac{x+y}{1+xy}+1=\frac{x+y+xy+1}{1+xy}=\frac{x+1+y(x+1)}{1+xy}=\frac{(x+1)(1+y)}{1+xy}\leqslant 0$ car 1+xy>0, x+1>0 et 1+y>0.

Commentaires

- ⇒ Il est naturel de tenter une factorisation afin d'étudier le signe d'une expression.
- \Rightarrow L'inégalité 1 + xy > 0 est justifiée par $xy \le |xy| \le 1$.
- ⇒ On peut aussi trouver le signe de x + y xy 1 en étudiant à y fixé dans] 1,1[les variations sur] 1,1[de $x \mapsto x + y xy 1$.
- \Rightarrow On peut aussi remarquer que l'inégalité est équivalente à $(x+y)^2 \le (1+xy)^2$, ie $x^2y^2-x^2-x^2+1 \ge 0$. On conclut en remarquant que $x^2y^2-x^2-x^2+1=(1-x^2)(1-y^2)$.

Par l'inégalité de Cauchy-Schwarz $\sum_{k=1}^n k\sqrt{k} \leqslant \sqrt{\sum_{k=1}^n k^2} \sqrt{\sum_{k=1}^n k} = \frac{n(n+1)}{2\sqrt{3}} \sqrt{2n+1}$.

Notons U := $\{u_n; n \in \mathbb{N}\}\$ et V := $\{v_n; n \in \mathbb{N}\}\$.

- **1.** Soit $k \in \mathbb{N}$. Comme u_k est un minorant de V, on a $u_k \leqslant \inf V$. Ainsi $\inf V$ est un majorant de U d'où sup $U \leqslant \inf V$.
- 2. a. On reprend les notations de la question précédente.
 - \Rightarrow Tout minorant de U est aussi un minorant de V. Le plus grand minorant de U est donc un minorant de V : ainsi inf U \leq inf V.
 - \Rightarrow Tout majorant de V est aussi un majorant de U. Le plus petit majorant de V est donc un majorant de U : ainsi sup U \leq sup V.
 - **b.** Il suffit de choisir $u_n = 0$ et $v_n = 1$ pour tout $n \in \mathbb{N}$.
 - **c.** Il suffit de choisir $u_0 = -2$ et $v_0 = -1$, puis $u_n = 0$ et $v_n = 1$ pour tout $n \in \mathbb{N}^*$.

10 ⁵

Soit $a \in \mathbb{R}$. Résoudre l'inéquation $\sqrt{x^2+1} \le x-a$ d'inconnue x réelle. L'inéquation est équivalente à $x \ge a$ et $x^2+1 \le (x-a)^2$, i.e. $x \ge a$ et $2ax \le a^2-1$. Pour continuer les calculs, il faut commencer une disjonction de cas sur le signe de a.

- \Rightarrow Cas 1 : a = 0. Il n'y a pas de solution.
- \Rightarrow Cas 2 : a > 0. On vérifie que $\frac{a^2 1}{2a} < a$ et il n'y a donc aucune solution.
- \Rightarrow Cas 3 : a < 0. On vérifie que $\frac{a^2 1}{2a} > a$ et l'ensemble des solutions est $\left[\frac{a^2 1}{2a}, +\infty\right[$.

11 ່ ວ

On remarque que

$$|a+b|^2 = |a \times 1 + b \times 1|^2 \le (1^2 + 1^2)(a^2 + b^2) = 2(a^2 + b^2)$$

d'après l'inégalité de Cauchy-Schwarz. On a donc, après élévation au carré,

$$(a+b)^4 \le 4(a^2+b^2)^2$$
.

Mais à nouveau d'après l'inégalité de Cauchy-Schwarz,

$$|a^2 + b^2|^2 = |a^2 \times 1 + b^2 \times 1|^2 \le (1^2 + 1^2)((a^2)^2 + (b^2)^2) = 2(a^4 + b^4)$$

et donc

$$(a+b)^4 \le 4(a^2+b^2)^2 \le 4 \times 2(a^4+b^4) = 8(a^4+b^4).$$

12

Soit $\alpha \in \mathbb{R}$. On raisonne par récurrence. Pour tout $n \in \mathbb{N}$, on note $HR(n) : |\sin n\alpha| \le n |\sin \alpha|$.

- \Rightarrow HR(0) est clairement vraie car les deux membres de l'inégalité sont nuls lorsque n=0.
- \Rightarrow Soit $n \in \mathbb{N}$. Supposons HR(n). On a :

$$\sin((n+1)\alpha) = \sin(n\alpha + \alpha) = \sin(n\alpha)\cos\alpha + \cos(n\alpha)\sin\alpha$$

ainsi:

$$|\sin((n+1)\alpha)| \leqslant \underbrace{|\sin(n\alpha)\cos\alpha| + |\cos(n\alpha)\sin\alpha|}_{\text{e |sin}(n\alpha)| \times |\cos\alpha| + |\cos(n\alpha)| \times |\sin\alpha|}_{\text{e |sin}(\alpha)| \times |\sin\alpha| + |\cos(n\alpha)| \times |\sin\alpha|}_{\text{e |sin}(\alpha)| \times 1 + 1 \times |\sin\alpha| = (n+1)|\sin(\alpha)|} \text{ (par HR}(n) \text{ et } |\cos| \leqslant 1)$$

d'où HR(n+1).

a. Par l'inégalité de Cauchy-Schwarz, on a

$$1 \times a + b \times 1 \leq \sqrt{1 + b^2} \sqrt{a^2 + 1} \leq (1 + b^2) (1 + a^2)$$

car $x \ge \sqrt{x}$ pour tout réel $x \ge 1$.

- \Rightarrow Cette inégalité est stricte pour x > 1. Ainsi, pour a ou b non nuls, $a + b < (1 + a^2)(1 + b^2)$.
- \Rightarrow Si a = 0 et b = 0, l'inégalité précédente est stricte car les deux membres sont respectivement 0 et 1.

b. On a
$$(1+a^2)(1+b^2) - a - b = \left(a - \frac{1}{2}\right)^2 + \left(b - \frac{1}{2}\right)^2 + a^2b^2 + \frac{1}{2} > 0.$$

Soit t dans [0,1]. Par l'inégalité de Cauchy-Schwarz :

$$\sum_{k=0}^{n} a_k t^k \leq \sqrt{\sum_{i=0}^{n} a_i^2} \sqrt{\sum_{i=0}^{n} t^{2i}} = \sqrt{\sum_{i=0}^{n} a_i^2} \sqrt{\frac{1 - t^{2n+2}}{1 - t^2}}$$

en appliquant la formule des sommes géométriques (la raison t^2 étant distincte de 1). On conclut en remarquant que, puisque t est entre 0 et 1, on a $\frac{1-t^{2n+1}}{1-t^2} \leqslant \frac{1}{1-t^2}$, et donc $\sqrt{\frac{1-t^{2n+2}}{1-t^2}} \leqslant \sqrt{\frac{1}{1-t^2}} = \frac{1}{\sqrt{1-t^2}}$ par croissance de la racine carrée.

1. Soit $k \in [1, n]$. Par l'inégalité de Cauchy-Schwarz, on a

$$\underbrace{\left(\sum_{i=1}^{k} \sqrt{a_i} \frac{i}{\sqrt{a_i}}\right)^2}_{= \frac{k^2(k+1)^2}{4}} \leqslant \sum_{i=1}^{k} a_i \sum_{i=1}^{k} \frac{i^2}{a_i}$$

d'où l'inégalité demandée.

2. Soit $k \in [1, n]$. On a, par la question 1. $\frac{k}{a_1 + \cdots + a_k} \leqslant \frac{4}{k(k+1)^2} \sum_{i=1}^k \frac{i^2}{a_i}$. Puis, par superposition :

$$\sum_{k=1}^{n} \frac{k}{a_1 + \dots + a_k} \leqslant \sum_{k=1}^{n} \left(\frac{4}{k(k+1)^2} \sum_{i=1}^{k} \frac{i^2}{a_i} \right) = 4 \sum_{i=1}^{n} \frac{i^2}{a_i} \sum_{k=i}^{n} \frac{1}{k(k+1)^2}$$

- **3.** Soit $k \in \mathbb{N}^*$. On a $\frac{1}{k^2} \frac{1}{(k+1)^2} = \frac{2k+1}{k^2(k+1)^2} \geqslant \frac{2k}{k^2(k+1)^2} = \frac{2}{k(k+1)^2}$.
- **4.** Soit $n \in \mathbb{N}^*$. D'après les deux questions précédentes, on a par télescopage :

$$\sum_{k=1}^{n} \frac{k}{a_1 + \dots + a_k} \leqslant 2 \sum_{i=1}^{n} \frac{i^2}{a_i} \sum_{k=i}^{n} \frac{2}{k(k+1)^2} \leqslant 2 \sum_{i=1}^{n} \frac{i^2}{a_i} \sum_{k=i}^{n} \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) = 2 \sum_{i=1}^{n} \frac{i^2}{a_i} \left(\frac{1}{i^2} - \frac{1}{(n+1)^2} \right)$$
Ainsi,
$$\sum_{k=1}^{n} \frac{k}{a_1 + \dots + a_k} \leqslant 2 \sum_{i=1}^{n} \frac{i^2}{a_i}.$$

1. On a $\cos^2 x = \frac{\cos(2x)+1}{2}$ pour tout réel x. Puisque $e^{2i} \neq 1$, on a

$$\sum_{k=1}^{n} \cos^{2} k = \sum_{k=1}^{n} \frac{\cos(2k) + 1}{2} = \frac{n}{2} + \frac{1}{2} \operatorname{Re} \left(\sum_{k=1}^{n} e^{2ik} \right) = \frac{n}{2} + \frac{1}{2} \operatorname{Re} \left(e^{2i} \frac{e^{2in} - 1}{e^{2i} - 1} \right)$$
$$= \frac{n}{2} + \frac{1}{2} \operatorname{Re} \left(e^{i(n+1)} \frac{\sin n}{\sin 1} \right) = \frac{n}{2} + \frac{(\sin n) \cos(n+1)}{2 \sin 1}$$

2. Puisque cos est à valeurs dans [-1, 1], on a $|\cos| \ge \cos^2$. Ainsi

$$\sum_{k=1}^{n} |\cos k| \geqslant \sum_{k=1}^{n} \cos^{2} k = \frac{n}{2} + \frac{(\sin n) \cos(n+1)}{2 \sin 1} \geqslant \frac{n}{2} - \frac{1}{2 \sin 1}$$

car $(\sin n)\cos(n+1)\geqslant -1$ et $2\sin 1>0$. Comme sin est croissant sur $\left[0,\frac{\pi}{2}\right]$ et $\frac{\pi}{2}>1>\frac{\pi}{4}>0$, on a $\sin 1\geqslant \sin\frac{\pi}{4}=\frac{1}{\sqrt{2}}>0$ d'où $-\frac{1}{2\sin 1}\geqslant -\frac{1}{\sqrt{2}}$ puis

$$\sum_{k=1}^{n} |\cos k| \geqslant \frac{n}{2} - \frac{1}{\sqrt{2}}$$

17 5

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $\phi_n(x) := \sum_{k=0}^n |x - k|$.

- **1.** \Rightarrow Pour $x \in \mathbb{R}_{-}$, on a $\phi_n(x) = \sum_{k=0}^n (k-x) = (n+1)(\frac{n}{2} x)$.
 - \Rightarrow Pour $x \ge n$, on a $\phi_n(x) = \sum_{k=0}^n (x-k) = (n+1)(x-\frac{n}{2})$.
- **2.** Soit $\ell \in [0, n-1]$ et $x \in [\ell, \ell+1]$. On a

$$\begin{split} \phi_n(x) &= \sum_{k=0}^{\ell} (x-k) + \sum_{k=\ell+1}^{n} (k-x) = -\frac{\ell(\ell+1)}{2} + (\ell+1)x - (n-\ell)x + \frac{(n+\ell+1)(n-\ell)}{2} \\ &= (2\ell+1-n)x - \frac{\ell(\ell+1) - (n-\ell)(\ell+n+1)}{2} \end{split}$$

- 3. On déduit des questions précédentes l'étude suivante :
 - \Rightarrow Cas 1 : n = 2m avec $m \in \mathbb{N}^*$. La fonction ϕ_n décroît sur $]-\infty, m]$ puis croît sur $[m, +\infty[$.
 - \Rightarrow Cas 2: n = 2m + 1 avec $m \in \mathbb{N}$. La fonction ϕ_n décroît sur $]-\infty, m]$, est constante sur [m, m+1] puis croît sur $[m+1, +\infty[$.

Dans tous les cas, ϕ_n admet un minimum sur $\mathbb R$ atteint en m et valant respectivement m^2+m et m^2+m+1 dans les cas 1 et 2.

,

LLG ♦ HX 6