
Ô AN 4 Fonctions numériques

Les exercices portent sur les propriétés générales et les rappels sur les fonctions
usuelles (trigonométriques, hyperboliques, exponentielles et logarithmes, puis-
sances).

Port de mer au soleil couchant, Claude Lorrain
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1. Quizz

1 � 4 Vrai ou faux ? f

1.

p
xx

x
p

x
−−−−−→
x→+∞ +∞.

2. Si f (x) −−−−−→
x→+∞ +∞, alors f est croissante au voisinage de +∞.

3. Une fonction périodique admettant une limite finie en +∞ est constante.

4.

√
x +

√
x +p

x −p
x −−−−−→

x→+∞
1

2
·

5. Si f (x) −−−−−→
x→+∞ +∞, alors

√
f
(p

x
)−−−−−→

x→+∞ +∞.

6. Si f (x)g (x) −−−−−→
x→+∞ +∞, alors f (x) −−−−−→

x→+∞ +∞ ou g (x) −−−−−→
x→+∞ +∞.

7. Si f (x)g (x) −−−−−→
x→+∞ 0, alors f (x) −−−−−→

x→+∞ 0 ou g (x) −−−−−→
x→+∞ 0.

8. Si f (x) −−−−−→
x→+∞ ℓ ∈R∗, alors f est du signe de ℓ au voisinage de +∞.

9. Pour α ∈R∗+, xα
⌊

1

x

⌋
−−−−→
x→0+

0 ⇐⇒ α⩽ 1.

10. Si f n’a pas de limite en +∞ et u(x) −−−−−→
x→+∞ +∞, alors f ◦u n’a pas de limite en +∞.

11. Si f a une limite réelle en +∞, alors f est bornée au voisinage de +∞.

12. Si f est croissante et
(

f (n)
)

n∈N converge vers ℓ, alors f (x) −−−−−→
x→+∞ ℓ.

13. Si f (x) ∼+∞ g (x), alors f (x)− g (x) −−−−−→
x→+∞ 0.

14. Si f (x)− g (x) −−−−−→
x→+∞ 0 et g (x) −−−−−→

x→+∞ +∞, alors f (x) ∼+∞ g (x).

2 � 4 QCM sur l’asymptotique f

1. Pour tout x > 0, on pose f (x) = sin xp
x

·

a. f (x) −−−−→
x→0+

0 ; b. f (x) −−−−→
x→0+

+∞.

2. Soit (a,b) ∈ (
R∗

+
)2 et f : x 7→ ⌊ax⌋

⌊bx⌋ · Vrai ou faux ?

a. f n’a pas de limite en
+∞ ;

b. f (x) −−−−−→
x→+∞

⌊a⌋
⌊b⌋ ; c. f (x) −−−−−→

x→+∞
a

b
·

3. Soit a > 1 et b > 1 deux réels, u : x 7→ xx , v : x 7→ abx
et h = u

v
· Vrai ou faux ?
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a. h(x) −−−−−→
x→+∞ +∞ ; b. h n’a pas de limite ne

+∞ ;
c. h(x) −−−−−→

x→+∞ 0.

4. Soit f : x 7→ x −
√

⌊x2⌋. Vrai ou faux ?

a. f n’a pas de limite en +∞ ; b. f (x) −−−−−→
x→+∞ 0.

5. Pour (x, y) ∈R2+, on pose f (x, y) =
( x

x +1

)y
.

a. lim
x→+∞ lim

y→+∞ f (x, y) = lim
y→+∞ lim

x→+∞ f (x, y) ;

b. lim
x→+∞ f (x, x) = 0 ;

c. lim
x→+∞ f (x, x) = 1 ;

d. lim
x→+∞ f (x, x) = e−1.

6. Soit f : [0,+∞[→R bornée. Pour tout x ∈R+, on pose g (x) = sup f ( [0, x[ ). Vrai ou faux ?

a. g admet des limites réelles à droite et à
gauche en tout point x0 deR∗+ ;

b. g admet une limite réelle en +∞ ;

c. ∀x0 ∈R∗+, f (x0)⩽ g (x+
0 ).

d. ∀x0 ∈R∗+, g (x−
0 )⩽ f (x0).

3 � 4 Vrai ou faux ? f

1. Pour tout n ∈Z, cos
(
n
π

2

)
= 0.

2. Pour tout n ∈Z, cos(nπ) = (−1)n .

3. L’ensemble des solutions de x + |x| ⩾ 2 est
[1,+∞[.

4. Pour tout x > 0, |ln x| ⩽ |x −1|.
5. ∀x ∈R, ∀(m,n) ∈N2,

(
xmn

)n = xmn+1
.

6. Pour tout (u, v) ∈ (
R∗+

)2, u ln v = v lnu .

7. Pour tout (a,b) ∈R2, e
a+b

2 ⩽
ea +eb

2
·

8. Pour tout x ∈R∗+, n
p

x −−−−−→
n→+∞ 0.

9. La fonction |sin|+ |cos| est π
2 -périodique.

10. ∀(x, y) ∈R2+, ∀n ∈N∗, n
p

x + y ⩽ n
p

x + n
p

y .

11. Pour α ∈R tel que α< 1, xα −−−−−→
x→+∞ 0.

12. La composée de deux fonctions impaires
est paire.

13. Si g est périodique, alors f ◦ g est pério-
dique.

14. Pour tout x ∈R+, |cos x| ⩽ x.

15. Pour n ∈N∗, la fonction x 7→ |cos(nπx)| est
1
n -périodique.

16. L’intervalle
[−π

2 , π2
]

est stable par sin.

17. Pour tout x ∈R, ln

√
1− tanh(x)

1+ tanh(x)
= x.

18. ∀(a,b) ∈R2, cosh(a+b) = cosh(a)cosh(b)+
sinh(a)sinh(b).

LLG Ô HX 6 3
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2. Exercices élémentaires

4 � 4 Une limite f

Pour tout x ∈R, existence et calcul de lim
n→+∞

(
1−e−x−lnn

)n
.

5 � 4 Une salve d’équivalents f

Déterminer un équivalent simple des expressions suivantes au voisinage du point indiqué

1.
sin x

ln
(
1+x2

) en 0 ;

2. xx −1 en 0+ ;

3.
e(tan x)2 −1

ecos x −e
en 0 ;

4. tan(x) (tan(2x))2 en
π

2
;

5. xx −1 en 1 ;

6. xx −ex en e ;

7. x1+ 1
x −x en +∞ ;

8. ex − (ln x)x en +∞ ;

9. 1− ex −e−x

ex +e−x
en +∞ ;

10. tan(3x)− sin(2x) en 0 ;

11. ex −cos x en 0 ;

12. 3p1+x −p
1+x en 0.

6 � 4 Comparaison f

Soit f :R→R telle que
f (x)

x
−−−−−→
x→+∞ +∞.

Pour λ ∈R, étudier le comportement de f (x)−λx en +∞.

7 � 4 Une équation

Résoudre dansR∗+ l’équation x
p

x =p
x

x
.

8 � 4 Symétries f

Tracer les courbes de x 7→ f (−x), x 7→ f (2−x), x 7→ f (2x) et x 7→ 2− f (x) à partir de celle de f :

LLG Ô HX 6 4
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9 � 4 Etude d’une suite de fonctions f

Pour tout n ∈N et x dansR, on pose fn(x) = xn(1−x).

1. Quelle est la limite de fn(x) lorsque n tend vers +∞?

2. Prouver que fn admet un maximum sur [0,1], noté un .

3. La suite (un)n∈N converge-t-elle ?

3. Exercices classiques plus techniques

10 � 4 une inéquation fonctionnelle f

Déterminer les fonctions f :R→R telles que ∀(x, y) ∈R2,
∣∣ f (x)− f (y)

∣∣⩽ e y−x

11 � 4 Composées f

Soit f :R→R une fonction et ℓ ∈R. Les propositions suivantes sont-elles vraies ?

1. f (x) −−−→
x→0

ℓ si et seulement si f
(
x3

)−−−→
x→0

ℓ ; 2. f (x) −−−→
x→0

ℓ si et seulement si f
(
x2

)−−−→
x→0

ℓ.

On justifiera avec soin son propos par une démonstration ou la donnée d’un contre-exemple détaillé.

12 � 4 Un grand classique f

Soit n ∈N∗.

1. En appliquant l’inégalité ex ⩾ 1+x à deux valeurs de x, établir que

(
n +1

n

)n

⩽ e ⩽
(

n +1

n

)n+1

.

2. En déduire que 0⩽ e −
(
1+ 1

n

)n

⩽
4

n
·

13 � 4 Puissances et fonctions trigonométriques ff

1. Étudier les variations de la fonction θ : x 7→ 2−x x surR.

2. En déduire les variations de x 7→ 2sin x +2cos x sur
[

0,
π

4

]
.

3. Démontrer que pour tout x ∈R, 3⩽ 2|sin x|+2|cos x| ⩽ 2
1+ 1p

2 .

LLG Ô HX 6 5
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14 � 4 Un produit ff

Soit α ∈ [0,1].

1. Démontrer que, pour tout réel positif x, (1+x)α ⩽ 1+αx.

2. En déduire que, pour tout n ∈N∗,
n∏

k=1

(
1+ α

k

)
⩾ (n +1)α.

15 � 4 Partie entière ff

On considère la fonction définie surR par f (t ) = t −
⌊p

2t
⌋

p
2

·
1. Montrer que f est bornée.

2. La fonction f admet-elle une limite en +∞ ? On justifiera avec soin.

LLG Ô HX 6 6
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4. Indications

1 �

Au 1., écrire le quotient sous la forme d’une exponentielle. Utiliser la quantité conjuguée au 4.

2 �

On a ⌊x⌋ ∼ x en ±∞. Au 6., on remarquera que g est croissante.

3 �

Au 10., on pourra utiliser la formule du binôme.

4 �

On trouve e−e−x
.

5 �

Lorsque x0 ̸= 0, on aura intérêt à effectuer le changement de variable x := x0 +u pour étudier le com-
portement de f (x) en x0.

6 �

Remarquer que x = o
(

f (x)
)

en +∞.

7 �

Passer au logarithme.

8 �

Les courbes se déduisent respectivement de celle de f par la réflexion d’axe (Ox), la réflexion d’axe
∆ : x = 1, une « compression de moitié » selon l’axe (Ox) et la réflexion d’axe ∆′ : y = 1.

9 �

Écrire un sous forme exponentielle afin de déterminer sa limite.

10 �

On trouve que f est constante.

11 �

Le 1. est vrai mais le 2. est faux.

12 �

Appliquer l’inégalité à x = 1
n puis à une valeur négative de x bien choisie.

LLG Ô HX 6 7
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13 �

Exprimer f ′ au moyen de θ.

14 �

Étudier une fonction au 1.

15 �

Encadrer classiquement la partie entière au 1. et utiliser le critère séquentiel au 2.

LLG Ô HX 6 8
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5. Solutions

1 �

1. Vrai car
p

xx

x
p

x
= exp

(
x ln x

2
−p

x ln x

)
= exp

(
x ln x

2

(
1− 2p

x

))
2. Faux. On peut diverger vers +∞ tout en oscillant. Cf. x 7→ x +2sin(x) :

3. Vrai. Notons T une période de f , ℓ sa limite en +∞ et fixons x dansR. La suite
(

f (x +nT)
)

n∈/N est
constante de limite ℓ donc f (x) = ℓ.

4. Vrai car

p
x −

√
x +

√
x +p

x =
√

x +p
x

p
x +

√
x +

√
x +p

x
=

p
1+x−1/2

1+
√

1+
p

x+px
x

5. Vrai par composition des limites.

6. Faux. Contre-exemple : f (x) = g (x) = (−1)⌊x⌋x.

7. Faux. Contre-exemple : f =1Q , g =1R\Q.

8. Vrai, c’est du cours.

9. Faux. Pour x > 0, on a xα−1 −xα < xα
⌊ 1

x

⌋
⩽ xα−1. On en déduit que xα

⌊ 1
x

⌋−−−−→
x→0+

0 ⇐⇒ α> 1.

10. Faux. Contre-exemple : f (x) = cos x , u(x) = 2π⌊x⌋.

11. Vrai, c’est du cours.

12. Vrai car pour tout x ∈R : f (⌊x⌋ ) ⩽ f (x) ⩽ f (⌊x⌋+1) (théorème d’encadrement et composition
des limites).

13. Faux. Contre-exemple : f (x) = x +1, g (x) = x.

14. Vrai. Puisque f (x) −−−−−→
x→+∞ +∞ et g (x)

f (x) −1 = g (x)− f (x)
f (x) −−−−−→

x→+∞ +∞ par opérations sur les limites.

Enseignements à tirer de cet exercice

À propos du 1. : pour résoudre des formes indéterminée faisant intervenir des puissances, on
écrit l’expression au moyen de l’exponentielle et on utilise les croissances comparées (on facto-
rise par le terme « dominant »).

Au 4., on utilise la quantité conjuguée.

LLG Ô HX 6 9
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Pour le 8. : comme dans le cas des suites numériques, il est toujours intéressant de se poser la
question de la monotonie (même si cela n’est pas explicitement demandé).

Au 11., c’est la réciproque qui est vraie : si u(x) −−−−−→
x→+∞ +∞ et f ◦u n’a pas de limite en +∞, alors

f n’a pas de limite en +∞.

Au 14., les propriétés sont très différentes, on peut avoir
f (x)

g (x)
−−−−−→
x→+∞ 1 et f (x)− g (x) −−−−−→

x→+∞ +∞
(choisir f (x) = x +p

x et g (x) = x).

2 �

1. Seul a. est vrai : surR∗+,

∣∣∣∣ sin(x)p
x

∣∣∣∣⩽p
x (on applique le théorème d’encadrement).

2. Seul c. est vrai. On a
⌊ax⌋

x
−−−−−→
x→+∞ a car ∀x > 0, a −x−1 < ⌊ax⌋

x
⩽ a (théorème d’encadrement).

On conclut en remarquant que
⌊ax⌋
⌊bx⌋ =

⌊ax⌋
x

× x

⌊bx⌋ pour x assez grand.

3. Seul c. est vrai :

h(x) = exp
(

x ln x −ex lnb ln a
)
= exp

(
−ex lnb

(
ln a − x ln x

ex lnb

))
et

x ln x

ex lnb
−−−−−→
x→+∞ 0

par croissances comparées.

4. Seul b. est vrai car x −
√
⌊x2⌋ = x2 −⌊x2⌋

x +
√
⌊x2⌋

et x2 −⌊x2⌋ ∈ [0,1[ (on en déduit un encadrement).

5. Seul d. est vrai. En effet ∀x ∈R+,
( x

x +1

)y
−−−−−→
y→+∞ 0 et ∀y ∈R+,

( x

x +1

)y
−−−−−→
x→+∞ 1. Et

f (x, x) = exp

(
− ln

(
1+x−1

)
x−1

)
−−−−−→
x→+∞ e−1 car

ln(1+u)

u
−−−→
u→0

ln′ 1 = 1 (taux d’accroissement)

6. Seuls a., b. et c. sont vrais. La fonction g est correctement définie (propriété de la borne supé-
rieure). Si M est un majorant de f , alors M majore également g . Donc g admet une limite réelle
en +∞ et des limites réelles à droite et à gauche en tout point de R∗+ (théorème de la limite mo-
notone). Soit x < x ′. On a [0, x[⊂ [0, x ′[ donc f (x) ⩽ f (x ′). Soit x > x0. On a f (x0) ∈ f ([0, x[) donc
f (x0) ⩽ g (x) puis f (x0) ⩽ g (x+

0 ) (passage à la limite à droite dans l’inégalité). Voici un contre
exemple à la dernière propriété : f (x) = −1 si x < 1, f (1) = −2 et f (x) = 1 si x > 1. En effet, on a
g (1−) =−1.

Enseignements à tirer de cet exercice

Au 1. : cf. le 1. du Vrai ou Faux et la remarque correspondante.

Au 6., il est naturel d’étudier la monotonie de la fonction.

Le 5. tourne autour de deux erreurs classiques.

LLG Ô HX 6 10
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La première est l’interversion des limites : même en cas d’existence des limites, on n’a pas
toujours lim

x→+∞ lim
y→+∞ f (x, y) = lim

y→+∞ lim
x→+∞ f (x, y). Plus généralement, on n’a pas toujours le

droit d’écrire (même lorsque les expressions ont un sens) :

lim
n→+∞

∫ b

a
fn(t )dt =

∫ b

a
lim

n→+∞ fn(t )dt ,
d

dx

∫ b

a
f (x, t )dt =

∫ b

a

∂ f

∂x
(x, t )dt , ect.

En effet, les intégrales et les dérivées sont définies au moyen d’un passage à la limite. Cepen-
dant sous certaines conditions suffisantes, ces égalités sont vérifiées (c’est l’objet de quelques
théorèmes dits d’interversion, qui figurent au programme de seconde année).

La seconde est la forme indéterminée 1∞ : si f (x) −−−−−→
x→+∞ 1 et u(x) −−−−−→

x→+∞ ±∞, alors on ne

peut rien dire en général du comportement de f (x)u(x) quand x →+∞, il faut une étude plus
poussée (nous développerons des outils adaptés dans le chapitre d’analyse asymptotique).

3 �

1. Faux. L’expression est nulle si et seulement si k est impair.

2. Vrai.

3. Vrai car sin(π−x) = sin(x) et −π/2⩽π−x ⩽π/2 pour x ∈ [π/2,π].

4. Faux. L’inégalité ln x ⩽ x − 1 est valable pour tout x > 0. Pour 0 < x < 1, ln x < x − 1 < 0 d’où
|ln x| > |x −1|.

5. Faux, la bonne valeur est xnmn
.

6. C’est vrai car u ln v = e(lnu)(ln v).

7. Vrai. Voici quelques idées de démonstration : l’exponentielle est convexe sur R, l’inégalité AG,
étudier une fonction de la variable a à b fixé, etc.

8. Faux. On a n
p

x −−−−−→
n→+∞ 1 car n

p
x = e

ln x
n .

9. Vrai par le formulaire de trigonométrie.

10. Vrai. Comme les deux expressions sont positives, il suffit de comparer leurs puissances n-èmes :(
n
p

x + n
p

y
)n − (x + y) =

n−1∑
k=1

(
n

k

)
n
p

x
k n
p

yn−k ⩾ 0

11. Faux. Pour α ∈ ]0,1[, on a xα −−−−−→
x→+∞ +∞.

12. Faux. La bonne réponse est « impaire ».

13. Vrai.

14. Faux. Cex : x = 0.

15. Vrai car |cos| est π-périodique.

16. Vrai car le sinus est à valeurs dans [−1,1], qui est inclus dans [−π/2,π/2].

17. Faux. L’expression se simplifie en 2x (revenir aux exponentielles).

18. Vrai. Développer puis simplifier le membre de droite en revenant aux exponentielles.

LLG Ô HX 6 11
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Enseignements à tirer de cet exercice

Les domaines de définition et de dérivabilité des fonctions usuelles sont à connaître sans aucune
hésitation.

À propos du 4. : il faut connaître les petites inégalités : sin x ⩽ x, ln x ⩽ x −1, ex ⩾ 1+x, etc.

4 �

Soit x ∈R. On a

n ln
(
1−e−x−lnn

)
= n ln

(
1− 1

n
e−x

)
∼ n × −e−x

n
=−e−x

Ainsi, par composition des limites, lim
n→+∞

(
1−e−x−lnn

)n = exp
(−e−x)

.

5 �

On notera systématiquement f (x) l’expression étudiée.

1. On a sin x
ln(1+x2) ∼

x
x2 = 1

x en 0.

2. On a xx −1 = ex ln x −1 ∼ x ln x en 0+ car x ln x −−−−→
x→0+ 0.

3. On a e(tan x)2−1
ecos x−e = e−1 e(tan x)2−1

ecos x−1−1
∼ e−1 (tan x)2

cos x−1 ∼ x2

−e x2
2

=−2e en 0, car tan x et cos x−1 tendent vers 0 avec

0.

4. On a tan
(
u + π

2

)
(tan(2u +π))2 = (tan2u)2

− tanu ∼ u2

−u =−u en 0 d’où tan(x) (tan(2x))2 ∼ π
2 −x en π

2 ·
5. On a (1+u)1+u −1 = e(1+u) ln(1+u) −1 ∼ (1+u) ln(1+u) ∼ u en 0 car (1+u) ln(1+u) −−−→

u→0
0. Ainsi

xx −1 ∼ x −1 en 1.

6. On a (e +u)e+u − ee+u = ee+u
((

1+ u
e

)e+u −1
)
= ee+u

(
e(e+u) ln

(
1+ u

e

)
−1

)
∼ ee (e +u) ln

(
1+ u

e

) ∼ ee ×
e × u

e = ee u en 0 d’où f (x) ∼ ee (x −e) en e.

7. On a x1+ 1
x −x = x

(
e

ln x
x −1

)
∼ x × ln x

x = ln x en +∞ car ln x
x −−−−−→

x→+∞ 0.

8. Comme
( e

ln x

)x −−−−−→
x→+∞ 0, on a ex − (ln x)x ∼−(ln x)x en +∞.

9. On a 1− ex−e−x

ex+e−x = 2e−x

ex+e−x ∼ 2e−x

ex = 2e−2x en +∞.

10. On a tan(3x) = 2x +o(x) et sin(2x) = 2x +o(x) d’où tan(3x)− sin(2x) = x +o(x) ∼ x en 0.

11. On a ex = 1+x +o(x) et cos x = 1− x2

2 +o
(
x2

)= 1+o(x) d’où ex −cos x = x +o(x) ∼ x en 0.

12. On a 3
p

1+x = 1+ x
3 +o(x) et

p
1+x = 1+ x

2 +o(x) d’où 3
p

1+x −p
1+x =− x

6 +o(x) ∼− x
6 en 0.

6 �

Soit λ ∈R. comme x = o
(

f (x)
)

en +∞, on a f (x)−λx −−−−−→
x→+∞ +∞.

LLG Ô HX 6 12
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7 �

Soit x ∈R∗+. L’équation x
p

x =p
x x est équivalente par application du logarithme à

p
x ln x = x

2 ln x, ie(
2
p

x −x
)

ln x = 0, soit x = 2
p

x ou x = 1, ou encore
p

x = 2 ou x = 1. On en déduit que les solutions
sont 1 et 4.

8 �

Les courbes se déduisent respectivement de celle de f par la réflexion d’axe (Ox), la réflexion d’axe
∆ : x = 1, une « compression de moitié » selon l’axe (Ox) et la réflexion d’axe ∆′ : y = 1.

x 7→ f (−x) x 7→ f (2−x)

x 7→ f (2x)
x 7→ 2− f (x)

9 �

Si 0⩽ x < 1 , lim
n→+∞xn = 0 et si x = 0 , fn(x) = 0 donc dans tous les cas,

lim
n→+∞ fn(x) = 0.

La fonction fn est dérivable surR et sur cet ensemble,

f ′
n(x) = xn−1(n − (n +1)x).

La fonction est donc croissante sur [0,n/(n+1)] et décroissante sur [n/(n+1),1] : elle admet un maxi-
mum en n/(n +1) valant :

un = fn
(
n/(n +1)

)= 1

n +1

(
1+ 1

n

)−n
.

D’après le résultat de l’exercice 4, on a
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lim
n→+i n f t y

(
1+ 1

n

)−n
= e−1,

ainsi,
lim

n→+∞un = 0.

10 �

Soit f une fonction vérifiant les conditions de l’énoncé. Fixons y dans R. Comme e y−x −−−−−→
x→+∞ 0,

on a f (x) −−−−−→
y→+∞ f (y) (théorème d’encadrement). Ainsi, par unicité de la limite, f est constante.

Réciproquement, il est immédiat que les fonctions constantes vérifient les conditions de l’énoncé.

11 �

1. Notons φ : x 7→ x3. La fonction φ est bijective deR dansR et continue, sa réciproque φ−1 : x 7→ x
1
3

est donc aussi continue. L’équivalence est claire par composition des limites en remarquant que
f = g ◦φ et g = f ◦φ−1.

2. L’implication f (x) −−−→
x→0

0 =⇒ f
(
x2

)−−−→
x→0

0 est vraie (par composition des limites). La réciproque

est fausse comme le montre l’exemple de

f (x) :=
{

0 si x ⩾ 0

−1 si x < 0

12 �

1. En appliquant à x = 1
n puis x =− 1

n+1 , on aboutit à :

e
1
n ⩾ 1+ 1

n > 0 d’où e =
(
e

1
n

)n
⩾

(
1+ 1

n

)n
.

e− 1
n+1 ⩾ 1− 1

n+1 > 0 d’où e−1 =
(
e− 1

n+1

)n+1
⩾

(
1− 1

n+1

)n+1
. d’où

(n+1
n

)n+1
⩾ e.

2. La minoration a déjà été établie. Par le 1., on a

e −
(
1+ 1

n

)n

⩽
(

n +1

n

)n+1

−
(
1+ 1

n

)n

=
(
1+ 1

n

)n (
1+ 1

n
−1

)
=

(
1+ 1

n

)n 1

n
⩽

e

n
⩽

4

n

car, en appliquant le 1. à n = 1, on trouve que e ⩽ 4.

13 �

1. On trouve facilement qu’elle est croissante sur ]−∞,1/ln2] et décroissante sur [1/ln2,+∞[ en
calculant le signe de sa dérivée.
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2. Cette fonction, que nous noterons f , est dérivable surR et, pour tout réel x,

f ′(x) = ln2
(

cos x2sin x − sin x2cos x )= cos x2sin x ln2

(
1− θ(sin x)

θ(cos x)

)
Pour x ∈ [0,π/4], sin x ⩽ cos x ⩽ 1 < 1/ln2 donc f ′(x)⩾ 0 par croissante de θ sur ]−∞,1/ln2].

3. La fonction à borner étant paire et (π/2)-périodique, il suffit de l’étudier sur [0,π/4]. Sur cet inter-
valle, elle coïncide avec f d’où

∀x ∈R, f (0) = 3⩽ 2|sin x|+2|cos x| ⩽ 2
1+ 1p

2 = f (π/4)

14 �

1. Posons φ : x ∈R+ 7→ 1+αx − (1+ x)α. Cette fonction est dérivable sur R+ en tant que somme de
fonctions dérivables et, sur cet intervalle,φ′(x) = α−α(1+x)α−1 ⩾ 0 car (1+x)α−1 ⩽ 1. On en déduit
que φ est décroissante et puisque φ(0) = 0, φ est positive.

2. Soit n ∈N∗. On a, pour tout k ∈ �1,n�, 1+ α

k
⩾

(
1+ 1

k

)α
> 0. Ainsi

n∏
k=1

(
1+ α

k

)
⩾

n∏
k=1

(k +1)α

kα
= (n +1)α

15 �

1. Soit t ∈R. On a t − 1p
2
<

⌊p
2t

⌋
p

2
⩽ t . Ainsi, f (R) ⊂

[
0,

1p
2

[
.

2. Comme

f

(
np

2

)
−−−−−→
n→+∞ 0 et f

(
np

2
+ 1

2
p

2

)
−−−−−→
n→+∞

1

2
p

2

on déduit du critère séquentiel que f n’a pas de limite en +∞.
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