Fonctions continues

Etude des propriétés locales et globales des fonctions continues sur un intervalle.

Carré noir sur fond blanc, Kazimir Malevitch
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1. Quizz

Limage par une fonction continue d'un intervalle ouvert est un intervalle ouvert.
Limage par une fonction continue d'un segment est un segment.

Limage par une fonction continue de R dans R d'une partie bornée est bornée.
Limage réciproque par une fonction continue d'un intervalle est un intervalle.
Une fonction f: R — R continue et périodique est bornée.

Une fonction f: R — R périodique est bornée.

Si f, g :I1— IR sont continues, alors min(f, g) et max(f, g) sont continues.

Si (f,g) € €° (R, R*)? vérifie | f| = |gl, alors f=gou f = —g.

Si (f,g) € €° (R, R)? vérifie | f| = |g|, alors f=gou f = —g.

La composée de deux fonctions f, g: R — R lipschitziennes est lipschitzienne.

. Le produit de deux fonctions f, g: R — R lipschitziennes est lipschitzien.

. La somme de deux fonctions f, g: R — R lipschitziennes est lipschitzienne.
. Si f,g: R — R sont continues et vérifient f|Q = g|Q, alors f =g.

. Si f:R;+ — R est continue et positive, alors f admet un minimum.

. Pour tout a > 0, il existe une bijection ¢ : R — | — a, al continue.

. Pour f,g:R — IR, si f est continue en 0, f(0) # 0 et g n'est pas continue en 0, alors fg n'est pas

continue en 0.

1

* = A d’'inconnue x € R admet deux solutions < A <e™".

L'équation xe™

. e 1 sixe@
On note 1 la fonction définie par Vx € R, 1q(x) = ] .
0 sixgQ
a. 1 n'est continue en aucun point; c. 1q est périodique;
b. x — xlg(x) n'est continue en aucun d. Y(x,y) € R?, Llox+y)=1gx)Lg).
point;

Soit I un vrai intervalle de R et f, g : I — R majorées, continues telles que f < g.

a.sup f<sup g; c. silestun segment, alors max f <max g;

b. sup f <sup g;

La fonction x — /x est lipschitzienne :
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a. sur [0,1]; b. sur]0,1]; c. sur [1, +ool.

4. Soit I un vrai intervalle de R et f : I — I une fonction continue.

a. [ admet un point fixe; c. I=[0,1 = f admet un point fixe;
b. Isegment — f admet un point fixe; d. I=]0,1] = f admet un point fixe.
5. Soit f: R — R telle que f(x) —00.
X—*00
a. f n'est pas surjective; b. f continue = f admet un maximum.

6. Soit f,g: R — R continues a droite en tout point de [0, 1].

a. [ est majorée sur [0,1]; c. fogestcontinue a droite en 0.

b. f est minorée sur [0,1];

e*—e™*
7. Soit la fonction f: R — R définie par x —» ——-
(e*+e™¥)
a. f estbornée; c.sup f<1;
b. f n'admet pas de maximum; d. min f>—1.

2. Exercices élémentaires

o® Une équation scalaire

Montrer que I'équation E : x? cos x + xsinx + 1 = 0 admet au moins une solution x € R.

n 0® Une étude de continuité

En quel points de R, la fonction ¢ : x — |2x] — 2| x] est-elle continue ?

B Q® Croisement de deux fonctions

Soit f et g deux applications continues de [0, 1] dans R telles que f(0) =0, f(1)=1,g(0)=1et g(1) =0.
Démontrer qu'il existe un réel a € [0, 1] tel que f(a) = g(a).

a Q® Un inverse

1
Soit f:[0,1] —10, 1] continue. Justifier que ? est bornée.

LLG ¥ HX6 3
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Q® Une suite implicite f

Soit f: [0,1] — [0, 1] une fonction continue.
1. Pour n € IN*, montrer qu’il existe un réel x, € [0,1] tel que : f(x,) = x]..
2. On suppose désormais que f est strictement décroissante sur [0, 1].
a. Montrer que, pour tout n € IN*, le réel x,, est unique.
b. Montrer que la suite (x,),>1 est strictement croissante.

c. Montrer que la suite (x,),>1 est convergente et donner sa limite.

a Q@ Barycentres f

Soit f € €°([a, b],R) avec f(a) # f(b), et u, v des réels strictement positifs. Montrer que

dce€la,bl, uf(a)+vfb)=(u+v)f(c)

a Q@ Une équation fonctionnelle de cocnours f

Soit f € €°(R,R) telle que Vx € R, f(x) = f(sinx).
1. On fixe x € R. Etudier la suite définie par ug:= xet Vne N, u, 1 =sinu,.

2. En déduire que f est constante.

10 X Avis de recherche f

Existe-t-il une fonction continue surjective de ]0, 1[ sur [0, 1] ?

3. Exercices classiques plus techniques

11 RO Composées f

Soit f: R — IR continue et g: R — R bornée. Montrer que f o g et go f sont bornées.

12 [oXO) A bornes égales f

Soit (a, b) € R? tel que a< b, f et g deux fonctions de [a, b] dans R, continues et vérifiant

max f(¢f) = max g(t)
aétgbf aétgbg

Montrer qu’il existe ¢ appartenant a [a, b] tel que f(c) = g(c).

LLG ¥ HX6 4
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13 RO Une composée f

Soit f et B deux fonctions continues de R dans R telles que 0 soit périodique.

. . (foB)(x)
Prouver 'existence et calculer lim f—
x—+00 X

14 RO Une équation fonctionnelle ff

Soit f: R — IR continue telle que Vx € R, f(x?)= f(x). Montrer que f est constante.

15 R Une impossibilité ff

Soit f une fonction continue surjective de ]0, 1[ sur [0, 1]. Montrer que f ne peut étre injective.

16 RKO; Fonctions continues divergeant vers —oo en +oo ff

Soit f: R+ — IR continue telle que f(x)

—oo. Démontrer que f admet un maximum.
X—+00

17 KO Stetige Bijektion mit unstetige Umkehrabbildung ff

Man finde Teilmengen A, B c R und eine stetige Bijektion f: A — B, so dass f~! nicht stetig ist.
Remarque : « stetig » signifie continu en Allemand.

LLG ¥ HX6 5
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4. Indications

(1 i}

On pourra dessiner, chercher des exemples ou des contre-exemples au moyen de fonctions usuelles
ou de fonctions définies par morceaux. Le 8. vrai mais le 9. est faux.

B8 -

On cherchera des exemples ou des contre-exemples au moyen de fonctions usuelles ou définies par
morceaux.

8-

Appliquer le TVI.

a-

La fonction ¢ est continue en tant point de R\{%; n € Z} et discontinue en tout pointde {§; ne Z}.

o
S’'intéressera d:= f — g.
Q-

.1 .
La fonction — est continue.

5
Considérer x — f(x) — x".
0-
Vérifier que

B -

La suite converge vers 0. Itérer le sinus dans I’équation fonctionnelle pour conclure.

o -

La réponse est positive. Chercher une fonction trigonométrique par exemple.

o -

Pour f o g, on pourra appliquer le théoreme de Weierstrass a f.

b
M € [f(a),f(b)].

+v

LLG ¥ HX6 6
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o -

Commencer par une figure. Raisonner par I'absurde.

o -

La périodicité de O permet de se ramener a un segment.

o -

Remarquer que f est paire et vérifie pour tout réel x positif f(1/x) = f(x). Itérer la racine afin de faire
apparaitre une suite convergente.

o -

Raisonner par I'absurde.

o -

Revenir a la définition et utiliser le théoreme de Weierstrass.

@ -

A kann aus mehreren Intervallen bestehen.

LLG ¥ HX6 7
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5. Solutions

(1 i}

1. Faux.

|
fUa,bl)=1Icd]
2. Vrai, c’est le théoreme de Weierstrass.

3. Vrai. Soit A c R bornée. Il existe un segment S de R tel que A < S. Ainsi f(A) < f(S) or, par le
théoreme de Weierstrass, f(S) est un segment, d’'ou f(A) est bornée.

4. Faux. Pour la fonction f de [-1,1] dans [-1, 1] tracée ci-dessous,

P4

ulb,1]

1
a,——
2

5. Vrai. Si T est une période de la fonction f, alors f(R) = f([0,T]) est bornée par le théoréme de
Weierstrass.

6. Faux. L'unique fonction f: R — R qui est 1-périodique et vérifie

1
Vx E]O) 1]) f(x) - ;

est un contre-exemple.
+g—-1f- +g+|f—
f gzlf g (f,g):f gzlf gl

8. Vrai. Eneffet, h = f g_1 est continue sur R et par le TVI, h(R) est un intervalle inclus dans la paire
{~1,1}donch=1ouh=-1.

7. C’est vrai car min(f, g) =

9. Faux. Méditer les figures suivantes :

LLG ¥ HX6 8
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10.

11.

12.

13.

14.

15.
16.

17.

/\

Vrai. Soient a et b des constantes de Lipschitz pour f et g. Pour (x,y) € R?, ona

|(feg)) = (feg)y)|<al|gx)-g| <ab|x-y]|

Faux. Le carré fonction id nous fournit un contre-exemple évident car l'identité est clairement
lipschitzienne et
(x+ 1)2 —x2
X— —
X+1-x

=2x+1

n’est pas bornée sur R donc x — x? n’est pas lipschitzienne.

Vrai. Soient a et b des constantes de Lipschitz pour f et g. Pour (x,y) € R2, on a par l'inégalité
triangulaire :

|(F+) @)~ (f+@W|<|f0 - F|+]g)—g| < (a+b) |x~y]
Vrai. Soit x € R. Il existe une suite de rationnels () ,civ de limite x (densité de () dans R). Comme
VHEIN, f(rn) = g(rn)

et f, g sont continues en x, on en déduit par passage a la limite que f(x) = g(x).

Faux. La fonction x — (x +1)7! est un contre-exemple évident : f admet une borne inférieure sur
R+ qui est 0 mais celle-ci n’est pas atteinte.

Vrai. La fonction atanh convient.

Vrai. Supposons que f est continue en 0 avec f(0) # 0. Raisonnons par contraposition. Supposons
fg continue en 0. Comme f(0) # 0 et f est continue en 0, 1/ f est définie et continue sur un
voisinage V de 0. Sur V, on a g = (fg) f~! donc g est continue en 0 (opérations sur les fonctions
continues).

Vrai. Il suffit d’étudier les variations de la fonction x — xe™”*.

Enseignements a tirer de cet exercice

Il faut beaucoup dessiner (tout en se méfiant des figures).

Il faut arriver a distinguer ce qui reléve de la continuité globale (TVI, théoreme de Weierstrass)
et les aspects locaux.

LLG ¥ HX6 9
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8-

1. Seuls a. et c. sont vrais.

= Pour montrer le a., le plus simple est d’utiliser le critere séquentiel. Soit x € R. Par densité de
Q et R\ Qdans R, il existe (r,) >0 et (in) n>0 suites de rationnels et d’irrationnels convergeant
vers x. Ona 1q(ry) Letlg(in) 0 donc 1 n’a pas de limite en x.

n—+oo n—+oo

= Comme V(x,T)eRxQ, x+TeQ < xe€Q, tout rationnel est une période de 1q.

= Comme |x1g(x)| < |x| pour tout x réel, on a x1¢g(x) — 0=0x1g(0) (théoreme d’encadre-
ment) donc x — x1g(x) est continue en 0.

= Le choix de x = V2 et y = —x est un contre-exemple au d.

2. Seuls a. et c. sont vrais.

= Comme I est non vide et f, g sont majorées, sup f et sup g existent. Comme f < g surl, ona
f < sup g dongc, par définition d'une borne supérieure, sup f < sup g.

= Cette inégalité peut-étre une égalité comme l'illustre I'exemple suivant: =R} et f: x— —1/x
etg:x—0.
= Sil est un segment, alors les deux sup sont des maxima (théoréeme de Weierstrass) atteints en
uetv: f(u) < g(u) < g(v)doncsup f <sup g.
Vx-0
x—0 x—0+

ﬁ_ﬁ = 1 <1
oy | VEer

3. Seul c. estvrai.On a

+o0. Pour tout (x, y) € [1, +oo[2, ona

4. Seul le b. est vrai.

= La fonction x — x + 1 et = R; donnent un contre-exemple au a.

. x+1
= Leb. est du cours. Les fonctions x — > et x — 2x sont des contre-exemples aux c. et d.

5. Seul b. est vrai.

xl-x six>0
= Lafonction définie f: R — R par f(x) =< 0 si x =0 estun contre-exemple au a.

—xl+x six<0

LLG € HX6 10
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= Il existe A > 0 tel que pour tout |x| > A, f(x) < f(0). Par le théoréme de Weierstrass, f admet
un maximum sur [-A, A]. Comme 0 € [-A, A], f(0) minore ce maximum et on en déduit que ce
maximum est un maximum sur R.

6. Tout est faux. Contre-exemples aux a. et b. :

1 .
fu%={;t7 six<l1
0

six>1

Les fonctions f: x — —x et g: x — |x] sont continues a droite sur R mais go f : x — |—x] n'est pas
continue a droite en 0.

7. Tout est vrai sauf le b. On remarque que f est continue (opérations sur les fonctions continues).
Comme f(x) 0, il existe A > 1 tel que pour x > A, f(x) < f(1). Par le théoreme de Weiers-
X—+00

trass, f admet un maximum sur [0,A]. Comme ce maximum est minoré par f(1), c’est aussi un
maximum pour f sur R,. On conclut en remarquant que f est impaire et positive sur R, et que

1

X e—x

VxeR,

eX+e™*

Enseignements a tirer de cet exercice

= Pour le 6. : 'exemple typique de fonction continue a droite (mais pas continue partout) est la
partie entiere.

= Pourle7.:onal < % par I'inégalité arithmético-géométrique.

8 -

Notons ¢ : R — R, x — x? cos x+xsin x+ 1. Cette application est continue (somme de fonctions conti-
nues). De plus ¢() = 1 — % <0 et $p(0) = 1 > 0 donc, par le TVI, ¢ admet au moins un zéro sur [0, 7).

(4 S

On sait que la partie entiere est continue en tout point de R\ Z.

= On déduit des théoremes sur les opérations sur les fonctions continues que ¢ est continue en tout
pomtdeIR\{ ; nEZ}

= Soitne€Z.0nad(u):=¢(5+u)=|n+2ul - u| pour tout u € R.

n
E
T Cas1:npair.Onad(u) = d(u) = [2u] —2|u] { u=0+  1afoncion ¢ n’est pas continue en n

u—0_

LLG € HX6 11
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o Cas2: nimpair. On a (u) n-1-2 {EJ et 6(u) n-2 {EJ et 6 n'est pas continue en

u—0- u—04

n

2
Ainsi ¢ est continue en tant point de R\ {; n € Z} et discontinue en tout point de {J; n € Z}.

8-

Soit 6: [0,1] — R définie par §(x) = f(x)—g(x). La fonction 6 est continue (opérations sur les fonctions
continues) et §(0)6(1) = —1 <0, on déduit du TVI I'existence de c € [0, 1] tel que f(c) = g(c).

O -

1
Il suffit d’appliquer le théoreme de Weierstrass a la fonction continue ? sur le segment [0, 1].

8-

1. Pour n € N*, on pose f;,:10,1] — R, x — f(x)—x". La fonction f;, est continue en tant que somme
de fonctions continues et, comme f([0,1]) < [0,1], on a f,,(0) = f(0) > 0et f,(1) = f(1)-1<0.0n
déduit alors du théoreme des valeurs intermédiaires I'existence de x, € [0, 1] tel que f,,(x,) =0.

2. On suppose désormais que f est strictement décroissante sur [0, 1].

a. On remarque que la fonction f;, définie au 1. est strictement décroissante sur [0,1] (en tant
que somme de fonctions strictement décroissantes sur [0, 1]) : le réel x;, est donc unique.

b. Soit n € IN. Pour tout x € [0,1], on a x**! < x", ainsi f;, < fu+1. On en déduit que 0 =
frnr1(Xn+1) 2 fu(xn41). Comme f;, est strictement décroissante et s’annule en x,, on en dé-
duit que x,+1 > x5. Ainsi (x,) est croissante.

c. Lasuite (x,) est croissante et a valeurs dans [0, 1] (donc majorée par 1) donc elle converge vers
unréel £ € [0, 1]. Raisonnons par I'absurde en supposant £ # 1. On a alors, par composition des

limites, x,; 0. Comme Vn € N, f(x,) = x); et f continue en ¢, on a f(£) = 0 par unicité

n—+oo
de lalimite. Comme f est strictement décroissante a valeurs dans [0, 1], on déduit de £ < 1 que

0= f(£) > f(1) ce qui est absurde. Ainsi xj, 1.

n—+oo

B -
uf(a)+vf(b)

= Leréel x:= S— est une combinaison linéaire convexe de f(a) et f(b) qui appartiennent
u+v
alintervalle f([a, b]) (parle TVI, f étant continue sur 'intervalle [a, b]).
= Ainsi x € f([a, b]) d’ou'existence de ¢ dans [a, b] tel que x = f(c).

= Comme f(a) f(b), - et - appartiennent a]0,1[, ona x f(a) et x # f(b), ainsi c €]a, bl.

u+v u+v
Q-

On utilisera le fait que & : x — x —sin x est strictement croissante sur R et nulle en 0 (une simple étude
permet de montrer ce résultat).

LLG € HX6 12
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1. On suppose d’abord que x € R .

= Comme sinR; c R, la suite (1) ;e est bien définie et a valeurs dans R .

= Sur R, onasinx < x. On déduit du point précédent que sinu,, < u, pour tout n € IN. La suite
(un) neN est convergente car décroissante et minorée par 0.

= Par continuité de sin, la limite ¢ de (u,,) ;e Vérifie 8(¢) =0d’ ot £ =0.
Dans le cas x <0, (i) ,elN €st croissante de limite nulle par imparité de sin.

2. Soit x € R. On reprend les notations de la question précédente. Pour tout n € IN, on f(u,) =
f(ups1). Ainsi f(u,) = f(x) pour tout n € IN et donc f(0) = f(x) par passage a la limite en uti-
lisant la continuité de f en 0 et u, 0. Ainsi f est constante.

5
1+ cos(4nx)

Oui. La fonction définie par f(x) := —————— convient clairement.

2
5

Le caractere borné de go f découle directement de celui de g. Comme g est bornée, il existe un seg-
ment S de R tel que g(IR) = S. On en déduit que (fog)(R) < f(S). Par le théoreme de Weierstrass, f(S)
est un segment donc f o g est bornée.

o -

Notons & := f — g. Raisonnons par 'absurde : supposons que Vx € [a, b], 8(x) # 0. Comme J est conti-
nue, on déduit du TVI que 6 a un signe constant sur le segment [a, b]. Quitte a permuter f et g, suppo-
sons que 6 > 0. Par le théoreme de Weierstrass, il existe c tel que g(c) soit le maximum de g sur [a, b].
Mais I'inégalité f(c) > g(c) est clairement en contradiction avec I'égalité des deux maxima.

(13 )

Soit T > 0 une période de 0. Puisque f o0 est continue (composée de deux fonctions continue) et T-

périodique, (f00)(R) = (f 0)([0,T]) est borné (th. de Weierstrass). On en déduit que L2 — o,

X X—+00
5

On remarque que f est paire. L'idée est d’itérer la relation : pour tout x € R, on prouve par une
2 . . n
récurrence facile que pour tout n € IN, on a f ( 2{’/}) = f(x) (). Fixons x € R}. Comme x? " 1,
n—+oo

en passant a la limite dans (%), on obtient f(1) = f(x) par continuité de f en 0. Ainsi, f est constante
sur R} donc sur R par continuité en 0 puis sur finalement R par parité.

o -

Raisonnons par I'absurde en considérant une fonction f continue et bijective de ]0,1[ sur [0, 1]. Sa
bijection réciproque est continue (cf. le cours) et f~1([0,1]) =]0, 1[ est un segment par le théoréme de
Weierstrass : c’est donc absurde.

n—+oo

LLG € HX6 13
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o -

Par définition de la limite, il existe A > 0 tel que Vx > A, f(x) < f(0). La fonction f admet un maximum
M sur [0,A] (th. de Weierstrass) et, puisque f(0) < M, M est un majorant de f sur [A, +oo[. Ainsi M est
le maximum de f sur R,.

@ -

Es sei

X wenn0< x<1
X [ —
x—1 wenn2<x<3.

Es ist klar, dass f eine stetige und bijektive Abbildung ist. Aber die Umkehrabbildung ist nicht stetig,
denn

ligllf_l(x) =2#1=f"11)

x>1

A A

: %
e
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