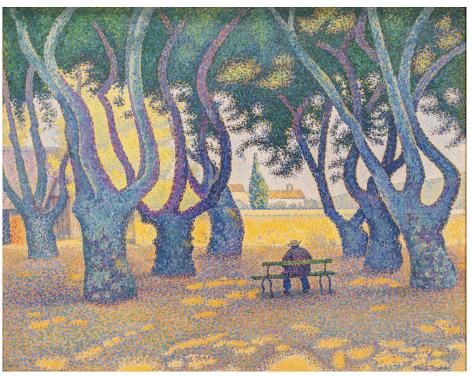
AN 2 | Suites numériques

L'étude des mathématiques est comme le Nil, qui commence en modestie et finit en magnificence.

Charles Caleb Colton



Place des Lices, Signac

2	Suit	tes numériques	1
	I	Généralités sur les suites	2
	II	Suites monotones	3
	III	Étude qualitatives de suites récurrentes	4
	IV	Suites définies implicitement	5
	V	Suites définies par une somme ou un produit	7
	VI	Comparaison des suites	7
	VII	Problèmes	9
	VIII	Indications	13

I. Généralités sur les suites

Soit $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites à valeurs dans [0,1] telles que $u_nv_n\xrightarrow[n\to+\infty]{}1$. Montrer que $u_n\xrightarrow[n\to+\infty]{}1$ et $v_n\xrightarrow[n\to+\infty]{}1$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\frac{u_n}{1+u_n^2}\xrightarrow[n\to+\infty]{}0$.

- 1. On suppose dans cette question que $(u_n)_{n\in\mathbb{N}}$ est bornée. Démontrer que $u_n\xrightarrow[n\to+\infty]{}0$.
- **2.** La suite $(u_n)_{n\in\mathbb{N}}$ est-elle nécessairement bornée ?

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que les suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Prouver que (u_n) converge.

4
$${\mathfrak Q}$$
 ${f \odot}$ — La série harmonique f —

Soient $\geqslant 1$ et $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que (H_n) est croissante. Qu'en déduit-on quant au comportement asymptotique de (H_n) ?
- **2.** Montrer que $\forall n \ge 1$, $H_{2n} H_n \ge \frac{1}{2}$. Décrire le comportement asymptotique de (H_n) .

- **1.** Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \overline{\mathbb{R}}$ tels que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} \ell$. Montrer que $\frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell$.
- **2.** Soit $(u_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ et $\ell \in \mathbb{R} \cup \{\pm \infty\}$ tels que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell$. Montrer que $\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$.
- **3.** Étudier le comportement asymptotique des suites définies par $a_n = \binom{2n}{n}^{1/n}$ et $b_n = \frac{\sqrt[n]{n!}}{n}$.

Pour $x \in \mathbb{R}$, on note $\{x\} = x - \lfloor x \rfloor$ la partie fractionnaire de x. Montrer que $(\{\sqrt{n}\})_{n \in \mathbb{N}}$ ne converge pas.

II. Suites monotones

Soient p et q deux réels strictement positifs tels que p + q = 1 et p > q. Soient (u_n) et (v_n) deux suites de réels telles que

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = pu_n + qv_n \\ v_{n+1} = pv_n + qu_n \end{cases}$$

- **1.** Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.
- **2.** Calculer la limite commune de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

8 🔉 👁 — — Suites bornées convexes ou concaves ff — — —

On considère une suite $(u_n)_{n\in\mathbb{N}}$ bornée telle que la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ soit monotone. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

Si $(u_n)_{n\geqslant 1}$ est une suite réelle à termes positifs, on lui associe la suite $(v_n)_{n\geqslant 1}$ définie par

$$v_n = \sqrt{u_1 + \sqrt{u_2 + \dots + \sqrt{u_n}}}$$

- **1.** Montrer que la suite $(v_n)_{n\geqslant 1}$ est croissante.
- **2.** Prouver que si la suite $(u_n)_{n\geqslant 1}$ est constante, alors $(v_n)_{n\geqslant 1}$ est convergente. Déterminer sa limite.
- **3.** Que peut-on dire de $(v_n)_{n\geqslant 1}$ si $(u_n)_{n\geqslant 1}$ est majorée ?

Soient $0 < b_0 \le a_0$, $(a_n)_{n \ge 0}$, $(b_n)_{n \ge 0}$ définies par $\forall n \ge 0$, $a_{n+1} = \frac{1}{2}(a_n + b_n)$ et $\frac{1}{b_{n+1}} = \frac{1}{2}\left(\frac{1}{a_n} + \frac{1}{b_n}\right)$.

- 1. Soit a et b deux réels strictement positifs. Montrer que $\frac{2}{a+b} \le \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$.
- **2.** Montrer que $\forall n \geqslant 0$, $b_n \leqslant b_{n+1} \leqslant a_{n+1} \leqslant a_n$.
- **3.** Montrer que $\forall n \geqslant 0$, $0 \leqslant a_n b_n \leqslant \frac{a_0 b_0}{2^n}$.
- **4.** Établir que les deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ sont adjacentes.
- **5.** Calculer $a_n b_n$ pour tout $n \in \mathbb{N}$, puis en déduire la valeur de la limite commune des deux suites.

————— Oldfashioned ff ————

Soient a et b deux réels tels que 0 < a < b, (u_n) et (v_n) les suites définies par

$$\begin{cases} u_0 = a \\ v_0 = b \end{cases} \text{ et } \forall n \geqslant 0, \begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

Prouver que les suites sont adjacentes. Leur limite commune s'appelle la moyenne arithmético-géométrique de a et b, on ne cherchera pas à la calculer!

III. Étude qualitatives de suites récurrentes

12 $\circ \bullet$ La suite babylonienne f ————

Soit c et a_0 deux réels strictement positifs. On définit $(a_n)_{n\in\mathbb{N}}$ par $\forall n\in\mathbb{N},\ a_{n+1}=\frac{a_n}{2}+\frac{c}{2a_n}$

- **1.** Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est convergente.
- 2. Déterminer sa limite.

Soient $f: x \mapsto x \frac{1+2x}{1+3x}$ et (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- **1.** Étudier le comportement asymptotique de (u_n) .
- **2.** Établir que $\frac{1}{u_{n+1}} \frac{1}{u_n} \xrightarrow[n \to +\infty]{} 1$.
- **3.** En déduire que $u_n \sim \frac{1}{n}$.

______Étude de quelques systèmes ff _____

Étudier les suites récurrentes suivantes :

- 1. $u_{n+1} = \sqrt{4+3u_n}$;
- **3.** $u_{n+1} = \exp(u_n)$;

- **2.** $u_{n+1} = \exp(u_n 1)$; **4.** $u_{n+1} = \cos u_n$;

5. $u_n = \sum_{k=1}^{n-1} \ln(a - u_k), u_1 = 0.$

On considère une suite $(u_n)_{n\in\mathbb{N}}$ vérifiant $0 < u_0 \leqslant u_1$ et $\forall n \in \mathbb{N}, u_{n+2} = \frac{1+u_n}{1+u_{n+1}}u_{n+1}$.

On admettra que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et à valeurs strictement positives.

1. Soit $(a, b, c) \in \mathbb{R}^3$ tel que $(c - a)(c - b) \le 0$. Sans justification, positionner c par rapport à a et b.

- **2.** Justifier que $(u_{n+2} u_{n+1})(u_{n+2} u_n) \le 0$ pour tout $n \in \mathbb{N}$.
- **3.** En déduire que, $\forall n \in \mathbb{N}, \ u_{2n} \leq u_{2n+1}$.
- **4.** Préciser la monotonie des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$. Que peut-on en conclure quant à la convergence de $(u_n)_{n\in\mathbb{N}}$?

Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. Soit $(a_n)_{n \geqslant 1}$ et $(b_n)_{n \geqslant 1}$ les suites définies par $a_1 = b_1 = 1$ et

$$\forall n \in \mathbb{N}^*, \ a_{n+1} = a_n + \beta b_n \ \text{ et } \ b_{n+1} = \frac{n}{n+1} (\alpha a_n + b_n)$$

- 1. Justifier que $a_n \xrightarrow[n \to +\infty]{} +\infty$ et $b_n \xrightarrow[n \to +\infty]{} +\infty$.
- **2.** On suppose dorénavant que la suite de terme général $\delta_n := \frac{a_{n+1}}{a_n}$ est monotone APCR.
 - **a.** On suppose que $\delta_n \xrightarrow[n \to +\infty]{} +\infty$. Démontrer que $\frac{b_n}{a_n} \xrightarrow[n \to +\infty]{} +\infty$ et en déduire une absurdité.
 - **b.** En déduire que $b_n \sim \sqrt{\frac{\alpha}{\beta}} a_n$. Indication : On pourra s'intéresser à $\frac{b_n}{a_n}$.

IV. Suites définies implicitement

On note $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

- **1.** Soit $n \in \mathbb{N}$. Démontrer que l'équation $x + \tan(x) = n$ admet une unique solution sur I. On la notera x_n .
- **2.** Étudier le comportement asymptotique de $(x_n)_{n \ge 0}$.

Soit $n \in \mathbb{N}^*$. On considère l'équation $E_n : e^x - x^n = 0$.

- 1. Montrer que, à partir d'un certain rang, E_n admet exactement deux racines positives $0 < u_n \le v_n$.
- **2.** Montrer que (u_n) converge vers une limite que l'on précisera.
- **3.** La suite (v_n) converge-t-elle ?

19 ${\mathfrak Q}$ ${lacktriangledown}$ Une intersection f

Soit $n \in \mathbb{N}$.

- 1. Montrer que l'équation $e^{-nx} = \sin x$ admet une seule solution sur $\left[0, \frac{\pi}{2}\right]$, notée x_n .
- **2.** Démonter que la suite $(x_n)_{n \in \mathbb{N}}$ converge et préciser sa limite.
- **3.** Justifier que $nx_n \sim -\ln x_n$ puis que $\ln x_n \sim -\ln n$ et en déduire un équivalent de x_n .

Soit $n \in \mathbb{N}^*$.

- **1.** Prouver l'existence d'un unique $a_n \in [0,1]$ tel que $a_n^n = \cos(a_n)$.
- **2.** Établir que la suite (a_n) converge puis déterminer sa limite.

- **1.** Montrer que, pour $n \in \mathbb{N}^*$, l'équation $x^n + x^{n-1} + \cdots + x 1 = 0$ admet une unique solution strictement positive notée a_n .
- **2.** Montrer que la suite $(a_n)_{n\geqslant 1}$ est strictement décroissante.
- **3.** Montrer que $a_n \xrightarrow[n \to +\infty]{1} \frac{1}{2}$.

 \bigcirc \bigcirc \bigcirc Une suite de racines ff

Pour tout $n \in \mathbb{N}$, on note $f_n : x \mapsto x^3 + n(x^2 - 1)$ (fonction définie sur \mathbb{R}).

- **1.** Démontrer que, pour tout $n \in \mathbb{N}$, il existe un unique $a \in \mathbb{R}_+$ tel que $f_n(a) = 0$. On note x_n ce réel.
- **2.** Démontrer que, pour tout $n \in \mathbb{N}$, $x_n \in [0,1]$.
- **3.** Établir que $x_n \xrightarrow[n \to +\infty]{} 1$.
- **4.** Déterminer un réel λ tel que $x_n 1 \sim \frac{\lambda}{n}$

1. Montrer que, pour tout $n \in \mathbb{N}^*$, l'équation

$$x \in]0,1[, \tan\left(\frac{\pi x}{2}\right) = \frac{\pi}{2nx}$$

admet une solution unique, notée x_n .

2. Étudier la suite réelle $(x_n)_{n\geqslant 1}$ et donner un équivalent de x_n .

- **1.** Montrer que, pour tout $n \ge 2$, $P_n := X^n + X^2 + X 1$ admet une unique racine dans \mathbb{R}_+ , notée r_n .
- **2.** Montrer que la suite $(r_n)_{n\geqslant 2}$ est bornée.
- **3.** Montrer que la suite $(r_n)_{n\geqslant 2}$ est convergente et déterminer sa limite ℓ .
- **4.** Donner un équivalent de $r_n \ell$.

V. Suites définies par une somme ou un produit

- 1. Soit $x \in \mathbb{R}$. Étudier le comportement asymptotique de la suite de terme général $u_n = \frac{\lfloor nx \rfloor}{n}$.
- **2.** Soit $x \in \mathbb{R}$. Étudier le comportement en $+\infty$ de la suite définie par $u_n = \sum_{k=1}^n \frac{\lfloor kx \rfloor}{n^2}$.

Pour tout x réel et tout entier naturel n, on pose $P_n(x) = \prod_{k=0}^n (x^{2^k} + 1)$.

- **1.** Simplifier l'expression de $P_n(x)$.
- **2.** Étudier la convergence de la suite $(P_n(x))$.

VI. Comparaison des suites

27 \mathbb{Q} \odot — Quelques équivalents autour du logarithme f — \mathbb{Q}

- 1. Pour $(\alpha, \beta) \in \mathbb{R}^2$, on pose $\forall n \in \mathbb{N}^*$, $u_n = \frac{\ln(1 + n^{\alpha})}{n^{\beta}}$. Étudier le comportement asymptotique de u_n .
- **2.** Pour $(a,b) \in \mathbb{R}_+^* \times \mathbb{R}$, on pose $\forall n \in \mathbb{N}^*$, $v_n = \frac{\ln{(1+a^n)}}{n^b}$. Étudier le comportement asymptotique de v_n .

 $u_n \sim v_n \text{ et } u_n - v_n f$

Soit $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ des suites de réels à valeurs dans \mathbb{R}_+^* .

- **1.** On suppose que $u_n \sim v_n$. Peut-on en conclure que $u_n v_n \xrightarrow[n \to +\infty]{} 0$?
- **2.** On suppose que $u_n v_n \xrightarrow[n \to +\infty]{} 0$. Peut-on en conclure que $u_n \sim v_n$?
- **3.** On suppose que $u_n v_n \xrightarrow[n \to +\infty]{} 0$ et $v_n \xrightarrow[n \to +\infty]{} +\infty$. Peut-on en conclure que $u_n \sim v_n$?

—— Exemple et contre-exemple f —

1. Expliciter deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ à valeurs dans $\mathbb{R}\setminus\{1\}$ telles que

$$u_n \sim v_n$$
, $v_n \xrightarrow[n \to +\infty]{} 1$ et $\ln u_n \not\sim \ln v_n$

2. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{R}_+^* telles que $u_n \sim v_n$ et $v_n \xrightarrow[n \to +\infty]{} 0$. Montrer que $\ln u_n \sim \ln v_n$.

Vrai ou faux ? Pour toutes suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$ dans $\mathbb{R}^{\mathbb{N}}$:

- **1.** $u_{n+1} \sim u_n$;
- **2.** $(u_n \sim v_n \text{ et } w_n \sim t_n) \implies u_n + w_n \sim v_n + t_n;$
- **3.** $u_n \sim v_n \implies u_n + w_n \sim v_n + w_n$;
- **4.** $u_n + w_n \sim v_n \implies u_n \sim v_n w_n$;
- **5.** Pour $f: \mathbb{R} \to \mathbb{R}$, $u_n \sim v_n \Longrightarrow f(u_n) \sim f(v_n)$;
- **6.** Si $u_n \sim v_n$ et $(v_n)_{n \in \mathbb{N}}$ décroît APCR, alors $(u_n)_{n \in \mathbb{N}}$ décroît APCR;
- **7.** Si $u_n \sim v_n$, alors u_n est du signe de v_n APCR;
- **8.** Si $u_n \sim v_n$ et $v_n \xrightarrow[n \to +\infty]{} +\infty$, alors $\ln u_n \sim \ln v_n$;
- **9.** Si deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ vérifient $u_n \sim v_n$, alors $u_n^n \sim v_n^n$.

——— Un classique ff —

Soit $(s_n)_{n\in\mathbb{N}}$ une suite de réels de limite nulle telle que $s_n + s_{n+1} \sim \frac{1}{n}$

- **1.** On suppose que $(s_n)_{n\in\mathbb{N}}$ est décroissante, montrer que $s_n \sim \frac{1}{2n}$.
- **2.** Prouver que ce résultat est en défaut si $(s_n)_{n \ge 0}$ n'est pas décroissante.

Sommes et équivalents ff

Soit $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ dans $(\mathbb{R}_+^*)^{\mathbb{N}}$ telles que $u_n \sim a_n$ et $v_n \sim b_n$. Montrer que $u_n + v_n \sim a_n + b_n$.

33 ♀ • X-PC 2011 ff • —

Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n k!$. Donner un équivalent de u_n .

Soit (x_n) définie par $x_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}$, $x_{n+1} = \sqrt{x_n + n^2}$. Déterminer un équivalent de x_n .

VII. Problèmes

———— Un couple de suites adjacentes f ————

L'objet du problème est d'étudier le comportement asymptotique du couple de suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ définies par

$$a_0 = a$$
, $b_0 = b$ et $\forall n \ge 0$, $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \sqrt{a_{n+1}b_n}$

où a et b sont des réels strictement positifs.

Partie I – Étude de la convergence

- **1.** On suppose dans cette question que a = b. Que peut-on dire des suites $(a_n)_{n \ge 0}$ et $(b_n)_{n \ge 0}$?
- **2.** On revient au cas général. Établir que $\forall n \geqslant 0$, $b_{n+1} a_{n+1} = \frac{\sqrt{a_{n+1}}}{2(\sqrt{b_n} + \sqrt{a_{n+1}})}(b_n a_n)$.
- **3.** On suppose dans cette question que a < b.
 - **a.** Montrer que $\forall n \in \mathbb{N}$, $a_n \leq b_n$.
 - **b.** En déduire le sens de variation des suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$.
 - **c.** Montrer que $\forall n \in \mathbb{N}, \ 0 \leqslant b_n a_n \leqslant \frac{b-a}{2^n}$.
 - **d.** Montrer que les suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ sont adjacentes.
- **4.** Que dire des suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ lorsque b>a ?

Partie II - Intermède: étude d'une suite

On définit la suite $(u_n)_{n\geqslant 0}$ par $u_0=\cos x$, $\forall n\geqslant 0$, $u_{n+1}=u_n\cos\left(\frac{x}{2^{n+1}}\right)$.

- 1. Prouver que la suite de terme général $v_n = u_n \sin\left(\frac{x}{2^n}\right)$ est géométrique.
- **2.** En déduire l'expression de u_n en fonction de n et x pour tout $n \in \mathbb{N}$.
- **3.** Démontrer que la suite $(u_n)_{n\geqslant 0}$ est convergente et préciser sa limite.

Partie III – Calcul de la limite dans le cas où a < b

Dans cette partie, on consière le cas particulier où a=1 et $b=\frac{1}{\cos x}$ pour $x \in \left]0, \frac{\pi}{2}\right[$.

On se propose de calculer explicitement $\ell(x)$, la limite commune de $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$.

- **1.** Justifier l'existence de $\ell(x)$.
- **2.** Donner l'expression de b_1 comme quotient de deux cosinus.
- **3.** Vérifier que $\forall n \in \mathbb{N}$, $a_n = \frac{u_n \cos\left(\frac{x}{2^n}\right)}{\cos^2 x}$ et $b_n = \frac{u_n}{\cos^2 x}$.
- **4.** En déduire que $\ell(x) = \frac{\tan x}{x}$.

36 ♀ ⊙

Étude d'une famille de suites f ————

Pour tout $x \in \mathbb{R}$, on note $(u_n(x))_{n \in \mathbb{N}}$ la suite vérifiant $u_0(x) = x$ et $\forall n \in \mathbb{N}$, $u_{n+1}(x) = \frac{(u_n(x))^2}{n+1}$.

Partie I - Généralités

- 1. Justifier que, pour étudier le comportement asymptotique de $(u_n(x))_{n\in\mathbb{N}}$, on peut se ramener au cas où $x\in\mathbb{R}_+$.
- **2.** Soit x et y deux réels tels que $0 \le x < y$. Prouver que pour tout $n \in \mathbb{N}$, $0 \le u_n(x) < u_n(y)$.
- **3.** Soit $x \in \mathbb{R}_+$ tel que $(u_n(x))_{n \ge 0}$ converge. Déterminer sa limite.
- **4.** Démontrer $u_n(1) \xrightarrow[n \to +\infty]{} 0$.
- **5.** Montrer que $u_n(2) \xrightarrow[n \to +\infty]{} +\infty$. INDICATION : On pourra démontrer que $\forall n \in \mathbb{N}, \ u_n(2) \geqslant n+2$.

Partie II - Étude de la convergence

- On note V_0 l'ensemble des $x \in \mathbb{R}^+$ tels que $u_n(x) \xrightarrow[n \to +\infty]{} 0$.
- De même, on note V_{∞} l'ensemble des $x \in \mathbb{R}^+$ tels que $u_n(x) \xrightarrow[n \to +\infty]{} +\infty$.
- 1. Soit $x \in \mathbb{R}_+$. On suppose qu'il existe $n_0 \ge 0$ tel que $u_{n_0+1}(x) \le u_{n_0}(x)$. Montrer que $(u_n(x))_{n \in \mathbb{N}}$ est décroissante à partir du rang n_0 et converge vers 0.
- **2.** En déduire que que $\mathbb{R}^+ = V_0 \cup V_{\infty}$.
- 3. Montrer que V_0 et V_∞ sont des intervalles. Indication : on montrera que ces ensembles sont convexes en utilisant le I.2.
- **4.** Justifier l'existence de $\delta := \sup V_0$ et montrer que $[0, \delta[\subset V_0 \subset [0, \delta] \text{ et }]\delta, +\infty[\subset V_\infty \subset [\delta, +\infty[$.
- **5.** Vérifier que $1 \le \delta \le 2$.

Partie III – Calcul de la valeur critique δ

Dans cette partie, on fixe $x \in \mathbb{R}_+^*$. On pose $\forall n \in \mathbb{N}$, $v_n(x) := \frac{\ln u_n(x)}{2^n}$.

- **1.** Justifier l'existence de $v_n(x)$ pour tout $n \in \mathbb{N}$.
- **2.** On pose, pour tout $n \in \mathbb{N}^*$, $S_n := \sum_{k=1}^n \frac{\ln k}{2^k}$.
 - **a.** Justifier l'existence d'un réel $\lambda > 0$ tel que $\forall k \in \mathbb{N}^*$, $\frac{\ln k}{2^k} \leqslant \frac{\lambda}{\sqrt{2}^k}$.
 - **b.** En déduire que $(S_n)_{n \in \mathbb{N}}$ converge vers un réel que l'on notera ℓ .
- **3.** Exprimer $v_{n+1}(x) v_n(x)$ en fonction de $n \in \mathbb{N}$.
- **4.** En déduire que $\delta = e^{\ell}$ ainsi qu'une nouvelle démonstration du II.4.
- **5.** On suppose dans cette question que $x = e^{\ell}$.
 - **a.** Vérifier que $\forall n \in \mathbb{N}$, $v_n(x) \geqslant S_{n+1} S_n$.
 - **b.** En déduire le comportement asymptotique de $(u_n(x))_{n \in \mathbb{N}}$.
- 6. Déterminer les intervalles V_0 et V_∞ en fonction de δ .

37 ♀ ⊙

Dans tout le problème, n désigne un entier naturel et $Q = \mathbb{R}^2_+$ et on note \mathscr{S} l'ensemble des suites réelles (u_n) vérifiant :

$$u_0 \geqslant 0$$
, $u_1 \geqslant 0$, et $\forall n \in \mathbb{N}^*$, $u_{n+1} = \frac{u_n^2 + u_{n-1}^2}{2}$

On associe à tout élément $(x, y) \in Q$ la suite u(x, y) appartenant à \mathcal{S} définie par $u_0 = x$ et $u_1 = y$. Le terme de rang n de u(x, y) sera noté $u_n(x, y)$ ou, si aucune ambiguïté n'est possible, par u_n .

Enfin,
$$\lambda$$
 désignant un élément de $\overline{\mathbb{R}}$, on note $\mathrm{E}_{\lambda} = \left\{ (x,y) \in \mathrm{Q} ; u_n(x,y) \xrightarrow[n \to +\infty]{} \lambda \right\}$.

- 1. Que peut-on dire de la limite éventuelle, finie ou infinie, d'un élément de \mathcal{S} ?
- **2.** Déterminer les suites constantes appartenant à \mathcal{S} .
- **3. a.** Montrer que, si $u \in \mathcal{S}$ a trois termes consécutifs égaux, alors u est constante.
 - **b.** Montrer que, si $u \in \mathcal{S}$ a deux termes consécutifs égaux à 1, alors u est constante.
 - **c.** Que peut-on dire de $u \in \mathcal{S}$ si $\exists n \in \mathbb{N} \setminus \{0, 1\}, u_n = 0$?
- **4.** Soit une suite $(u_n)_{n\geqslant 0}$ appartenant à $\mathcal S$ et non constante.
 - **a.** Comparer les signes de $u_{n+1} u_n$ et de $u_n u_{n-2}$ pour $n \ge 2$.
 - **b.** Montrer que, s'il existe $N \ge 1$ tel que u_{N+1} soit supérieur ou égal à u_{N-1} et à u_N , alors la suite $(u_n)_{n \ge 0}$ est strictement croissante à partir d'un certain rang. On établirait de même que, s'il existe $N \ge 1$ tel que u_{N+1} soit inférieur ou égal à u_{N-1} et à u_N , alors la suite $(u_n)_{n \ge 0}$ est strictement décroissante à partir d'un certain rang. La démonstration correspondante n'est pas demandée.
 - **c.** Étudier le comportement asymptotique de u(x, y) pour $(x, y) = (\sqrt{2}, 0)$ et (x, y) = (2, 0).
- **5.** Soit $(u_n)_{n\geqslant 0}\in \mathscr{S}$ non constante. On suppose que, pour tout $N\in \mathbb{N}$, $(u_n)_{n\geqslant N}$ n'est ni strictement croissante, ni strictement décroissante.
 - **a.** Montrer que $(u_{2n})_{n\geqslant 0}$ et $(u_{2n+1})_{n\geqslant 0}$ sont strictement monotones et de sens contraire. On pourra montrer que u_0 et u_1 sont distincts et envisager les deux cas $u_0 < u_1$ et $u_0 > u_1$.
 - **b.** Montrer que la suite $(u_n)_{n\geq 0}$ converge vers 1.
- **6.** Établir, pour $(u_n)_{n\geqslant 0}\in \mathcal{S}$ non constante, l'équivalence des propriétés suivantes :
 - i) Il existe un entier $N \in \mathbb{N}$ tel que $u_N \ge 1$ et $u_{N+1} \ge 1$.
 - ii) La suite $(u_n)_{n\geq 0}$ est strictement croissante à partir d'un certain rang.
 - iii) La suite $(u_n)_{n\geqslant 0}$ tend vers $+\infty$.

On montrera que, si i) est vérifiée, alors $u_n \ge 1$ à partir d'un certain rang.

- 7. Établir de même, pour $(u_n)_{n\geq 0}\in \mathcal{S}$ non constante, l'équivalence des propriétés suivantes :
 - i) Il existe un entier $N \in \mathbb{N}$ tel que u_N et u_{N+1} soient inférieurs au sens large à 1.
 - ii) La suite $(u_n)_{n\geq 0}$ est strictement décroissante à partir d'un certain rang.
 - iii) La suite $(u_n)_{n\geqslant 0}$ converge vers zéro.
- **8.** Montrer que E_0 , E_1 et $E_{+\infty}$ sont non vides et déterminer $E_0 \cup E_1 \cup E_{+\infty}$.

VIII. Indications

1

Appliquer le théorème d'encadrement.

2 5

On pourra au 1., par exemple, appliquer le théorème d'encadrement à $(|u_n|)_{n \in \mathbb{N}}$.

3 ⁵ -----

Prouver que les deux premières suites sont convergentes *de même limite* en trouvant pour chacune d'elles une suite extraite qui est *aussi* extraite de la troisième.

La suite (H_n) étant croissante, elle converge ou diverge vers $+\infty$. L'idée est de prouver par l'absurde qu'elle

diverge vers +∞.

Pour le 1., appliquer le lemme de Césaro à $u_{n+1}-u_n$. Pour le 3., considérer $\ln(u_n)$. On trouve que $a_n \xrightarrow[n \to +\infty]{} 1/e$.

À quoi ressemble le graphe de $x\mapsto \{\sqrt{x}\}$? Trouver deux suites extraites de $(\{\sqrt{n}\})_{n\in\mathbb{N}}$ convergeant vers des limites différentes.

Utiliser $u_n + v_n$ et $u_n - v_n$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ est monotone APCR.

9 5

Au 2., vérifier que $v_{n+1} = \sqrt{u_n + v_n}$: on est ramené à l'étude d'une suite récurrente. Au 3., noter a un majorant de (u_n) et vérifier que (v_n) est majorée par une suite récurrente (a_n) . Utiliser le fait qu'une suite convergente est majorée.

Tout découle de $(a-b)^2 \ge 0$. Pas besoin de récurrence pour le 2. Raisonner par récurrence au 3. Le 4. est immédiat. $a_nb_n=a_0b_0$.

 $LLG \lessapprox HX 6$

111

On partira des inégalités suivantes : si 0 < x < y, $0 < x < \sqrt{xy} < \frac{x+y}{2} < y$.

La suite est minorée par *c* et décroissante.

On pourra appliquer le théorème de Césaro au 3.

Commencez par une étude graphique.

La suite $(u_n)_{n\in\mathbb{N}}$ converge;

Au 1., intéressez-vous à la monotonie de $(a_n)_{n\geqslant 1}$. Au 2., intéressez-vous à la suite de terme général $\frac{b_n}{a_n}$.

Remarquer que $x \mapsto x + \tan x$ est bijective de I sur \mathbb{R} .

Par bijectivité du logarithme de \mathbb{R}_+^* sur \mathbb{R} , l'équation (E_n) est équivalente sur \mathbb{R}_+^* à $x - n \ln x = 0$. La suite (u_n) converge vers 1 et (v_n) diverge vers $+\infty$.

19 5 _____

La suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.

20 5 —

La suite (a_n) est croissante et $a_n \xrightarrow[n \to +\infty]{} 1$.

- **1.** Considérer l'application $f_n: x \mapsto x^n + x^{n-1} + \dots + x 1$.
- **2.** Utiliser la monotonie de f_n .
- **3.** L'expression de f_n fait intervenir une série géométrique.

22 🖻

Une piste (parmi tant d'autres) pour le 3. : fixer $\mu \in]0,1[$ puis étudier la limite de $f_n(\mu)$ quand n tend vers $+\infty$.

23 5

Simple question de bijectivité au 1.

24 5

Seule la dernière question est délicate. On trouve

$$r_n = x_2 - (2x_2 + 1)x_2^n + o(x_2^n)$$
 où $x_2 := \frac{-1 + \sqrt{5}}{2}$

25

Écrire la définition de la partie entière à l'aide des inégalités. La suite u_n tend vers x. La suite (u_n) converge vers x/2.

26 5 ———

Montrer par récurrence que

$$\forall x \neq 1, \ P_n(x) = \frac{x^{2^{n+1}} - 1}{x - 1}$$

27 🤈

Si $a_n \xrightarrow[n \to +\infty]{} 0$, alors $\ln(1+a_n) \sim a_n$ et si $a_n \xrightarrow[n \to +\infty]{} +\infty$, alors $\ln(1+a_n) \sim \ln a_n$.

<mark>28</mark> ්ට

Se souvenir que $u_n \sim v_n$ équivaut à $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$.

<mark>29</mark> ්ට

Se souvenir que $\ln(1+a_n) \sim a_n$ dans le cas où $a_n \xrightarrow[n \to +\infty]{} 0$.

30 5

Pour se faire une intuition, on se souviendra que $u_n \sim v_n \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$ (si $v_n \neq 0$ APCR).

Conclure par un encadrement au 1.

32

Former le quotient $\frac{u_n+v_n}{a_n+b_n}$ et faire apparaître $\frac{u_n}{v_n}$ et $\frac{a_n}{b_n}$.

33 C

On trouve $u_n \sim n!$ par un encadrement.

On peut conjecturer que la suite vérifie pour tout n, $n-1 \le x_n \le n + \mu$ où μ est une constante réelle.

35 C

Au I, positionner a_{n+1} , a_n , b_{n+1} , b_n sur un même axe peut aider à la compréhension.

36

La partie I est globalement du niveau f. Au II.2., on remarquera que le contraire de la proposition $\exists n_0 \in \mathbb{N}$, $u_{n_0+1}(x) \leq u_{n_0}(x)$ est

$$\forall n \in \mathbb{N}$$
, $u_{n+1}(x) > u_n(x)$

Beaucoup de raisonnements sont proches de ceux menés dans le problème précédents, mais ils sont plus techniques.