AN 1 Nombres réels

« En mathématiques, on ne comprend pas les choses, on s'y habitue.»

John von Neumann

Air, acier et eau, Robert Delaunay

I	Nombres réels		1
	I	Inégalités	2
	II	Partie entière	4
	III	Bornes	5
	IV	Indications	7

I. Inégalités

Résoudre l'inéquation $x^2 + \sqrt{2} \le (1 + \sqrt{2})x$ d'inconnue réelle x.

Soit $n \in \mathbb{N}^*$

- **1.** Soit x_1, \ldots, x_n des réels positifs. Montrer que $\prod_{k=1}^n (1+x_k) \geqslant 1+\sum_{k=1}^n x_k$.
- **2.** Soit y_1, \ldots, y_n des réels supérieurs ou égaux à 1. Établir que $n + \prod_{k=1}^n y_k \ge 1 + \sum_{k=1}^n y_k$.

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $S(x) := 1 - x^2 + x^4 - x^6 + x^8 + \dots + x^{2024} - x^{2026}$

Écrire S(x) au moyen du symbole Σ et en déduire que $0 \le S(x) \le \frac{1}{1+x^2}$.

----- Un encadrement -

Démontrer que $\forall n \in \mathbb{N}^*$, $n^2 \leqslant \left(\sum_{k=1}^n \sqrt{k}\right)^2 \leqslant \frac{n^2(n+1)}{2}$.

Soit $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n, b_1, \ldots b_n$ dans \mathbb{R} . Démontrer que $\sqrt{\sum_{i=1}^n (a_i + b_i)^2} \leqslant \sqrt{\sum_{i=1}^n a_i^2} + \sqrt{\sum_{i=1}^n b_i^2}$.

Soit $n \in \mathbb{N}$ tel que $n \ge 2$ et a_1, \ldots, a_n des réels strictement positifs et $\sigma := \sum_{i=1}^{n} a_i$.

1. Justifier que $\sum_{i=1}^{n} a_i^2 \geqslant \frac{\sigma^2}{n}$ et $\sigma \times \sum_{i=1}^{n} \frac{1}{a_i} \geqslant n^2$ puis en déduire que $\sum_{i=1}^{n} \frac{\sigma - a_i}{a_i} \geqslant n(n-1)$.

2. Démontrer que $\sum_{i=1}^{n} \frac{a_i}{\sigma - a_i} \geqslant \frac{n}{n-1}$.

Indication : Remarquer que $\sqrt{\frac{a_i}{\sigma - a_i}} \times \sqrt{a_i(\sigma - a_i)} = a_i$ puis appliquer Cauchy-Schwarz.

7 ♀ **O** • Autour des sommes partielles **ff** • Autour des sommes

Soit $n \in \mathbb{N}^*$ et a_1, \ldots, a_n des réels strictement positifs. On pose, pour tout $q \in [1, n-1]$:

$$S_q := \sum_{i=1}^q a_i - \sum_{i=q+1}^n a_i$$

et l'on convient que $S_n = -S_0 = \sum_{i=1}^n a_i$.

- **1.** Simplifier $S_i S_{i-1}$ pour $i \in [1, n]$.
- **2.** Justifier l'existence de $i_0 \in [1, n]$ tel que $S_{i_0-1} \le 0 < S_{i_0}$.
- **3.** En déduire qu'il existe $j \in [0, n-1]$ tel que $|S_j| \leq \max_{1 \leq i \leq n} a_i$.

Soit a et b dans \mathbb{R}_+^* . On pose $a \parallel b = \frac{ab}{a+b}$, somme parallèle de a et b.

- **1.** Montrer que $a \parallel b = \min_{\substack{(u,v) \in \mathbb{R}^2 \\ u,v=1}} (au^2 + bv^2).$
- **2.** Soit $n \in \mathbb{N}^*$ et $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in (\mathbb{R}_+^*)^{2n}$. En utilisant le 1., démontrer l'inégalité de Milne :

$$\sum_{k=1}^{n} (a_k \parallel b_k) \leqslant \left(\sum_{k=1}^{n} a_k\right) \parallel \left(\sum_{k=1}^{n} b_k\right)$$

Soit $n \in \mathbb{N}^*$.

1. Montrer que, pour tout $(x_1, ..., x_n, y_1, ..., y_n) \in \mathbb{R}^{2n}$:

$$\frac{1}{2} \sum_{1 \le i, j \le n} (x_i - x_j) (y_i - y_j) = n \sum_{k=1}^n x_k y_k - \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n y_k\right)$$

2. Soit a, b deux réels pour lesquels $a \le b$ et $x_1, \ldots, x_n \in [a, b]$. On pose $s := \sum_{k=1}^n x_k$.

a. Justifier que $\sum_{1 \leqslant i,j \leqslant n} (x_i - x_j)^2 \leqslant n^2 (b - a)^2$. Nous allons affiner cette inégalité.

b. Montrer que
$$\frac{1}{2} \sum_{1 \le i,j \le n} (x_i - x_j)^2 + n \sum_{k=1}^n (b - x_k) (x_k - a) = (nb - s)(s - na).$$

- **c.** Que vaut le maximum de la fonction $t \mapsto (nb t)(t na)$?
- **d.** En déduire que $\sum_{1 \le i,j \le n} (x_i x_j)^2 \le \frac{n^2(b-a)^2}{2}$.
- **3.** Soit a, b, c, d des réels vérifiant $a \le b$ et $c \le d$. Soit $(x_1, ..., x_n)$ une famille de réels compris entre a et b et $(y_1, ..., y_n)$ une famille de réels compris entre c et d.

On pose
$$\Delta = n \sum_{k=1}^{n} x_k y_k - \left(\sum_{k=1}^{n} x_k\right) \left(\sum_{k=1}^{n} y_k\right)$$
.

- **a.** Que dire de Δ si les familles (x_1, \ldots, x_n) et (y_1, \ldots, y_n) sont croissantes ?
- **b.** Montrer que $|\Delta| \leqslant \frac{n^2(b-a)(d-c)}{4}$.
- **4.** Soit $a_1, ..., a_n > 0$. On pose $S := \sum_{k=1}^n a_k$.
 - **a.** Montrer que $\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{S a_k}\right) = n + \sum_{k=1}^{n} \frac{a_k}{S a_k}$
 - **b.** En déduire, grâce au résultat de la question 3.a., que $\sum_{k=1}^{n} \frac{a_k}{S a_k} \geqslant \frac{n}{n-1}$.

II. Partie entière

10 ♀ ⊙

Une relation sur la partie entière f ————

Prouver que $\forall x \in \mathbb{R}$, $\left\lfloor \frac{x+1}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor = \lfloor x \rfloor$.

11 ? **③**

4

Prouver que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor.$

III. Bornes

L'ensemble A = $\left\{ \frac{\sqrt{n} + m}{n + \sqrt{m}}; (n, m) \in (\mathbb{N}^*)^2 \right\}$ admet-il une borne inférieure ? supérieure ?

13 \mathbb{Q} \odot Un sous-ensemble de \mathbb{Q} f ————

On pose $E := \left\{ \frac{a-b}{a+2b}; (a,b) \in (\mathbb{N}^*)^2 \right\}.$

- 1. Montrer que E admet une borne supérieure et une borne inférieure.
- 2. Calculer ces bornes et préciser si elles sont atteintes.

14 ${\mathfrak Q}$ ${f \odot}$ Bornes d'une somme de parties f

Soit A et B des parties non vides de \mathbb{R} . On définit A + B := {a + b; $(a, b) \in A \times B$ }. Montrer que si A et B sont bornées, alors A + B l'est aussi et que $\inf(A + B) = \inf(A) + \inf(B)$ et $\sup(A + B) = \sup(A) + \sup(B)$.

Soit $A \subset \mathbb{R}_+^*$ admettant une borne inférieure strictement positive. Justifier que $\sup_{a \in A} \frac{1}{a} = \frac{1}{\inf_{a \in A} a}$

Soient A et B deux parties non vides de \mathbb{R} telles que

$$\forall (a, b) \in A \times B, a \leq b$$
 et $\forall \varepsilon > 0, \exists (a, b) \in A \times B, b - a < \varepsilon$

Démontrer que sup A et infB existent et vérifient sup $A = \inf B$.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ bornée.

- **1.** Démontrer que $\sup_{x \in \mathbb{R}} \inf_{y \in \mathbb{R}} f(x, y) \leqslant \inf_{y \in \mathbb{R}} \sup_{x \in \mathbb{R}} f(x, y)$.
- 2. Donner un exemple de fonction pour laquelle cette inégalité est stricte.

18 ♀ ⊙

On pose $\Omega := \left\{ \cos(x) + \cos\left(\sqrt{2}x\right); x \in \mathbb{R} \right\}.$

- 1. Justifier que Ω admet une borne inférieure.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, il existe un unique couple d'entiers relatifs (a_n, b_n) tel que

$$\left(\sqrt{2}-1\right)^n = a_n + \sqrt{2}b_n$$

- **3.** Justifier que, pour tout $n \in \mathbb{N}$, a_n est impair et b_n a la même parité que n.
- **4.** Démontrer que $\cos\left(\sqrt{2}b_{2n+1}\pi\right) \xrightarrow[n\to\infty]{} -1$.
- **5.** En déduire la valeur de inf Ω .

IV. Indications

1 :

On sait trouver le signe de $ax^2 + bx + c$ depuis le lycée.

2 5

Raisonner par récurrence sur n au 1. (par exemple). Le 2. est une application du 1.

3 5

On bien-sûr $S(x) = \sum_{k=0}^{1013} (-x^2)^k$.

Appliquer l'inégalité de Cauchy-Schwarz pour la majoration.

<u>5</u> 5 ———

Élever au carré et simplifier les sommes de carrés.

c 6

Les deux premières inégalités du 1. se démontrent en appliquant l'inégalité de Cauchy-Schwarz.

Pour cet exercice, il est profitable de représenter sur un axe orienté les grandeurs $S_0, ..., S_n$ afin de comprendre par la géométrie où l'énoncé veut en venir!

Étudier les variations de la fonction définie sur \mathbb{R} par $f: u \mapsto au^2 + b(x-u)^2$.

9 5 ————

On appliquera l'inégalité de Cauchy-Schwarz au 3.b.

<u>10</u> 5 ———

On peut par exemple discuter selon la parité de $\lfloor x \rfloor$.

On peut par exemple remarquer que $\lfloor nx \rfloor = n \lfloor x \rfloor + \lfloor n \{x\} \rfloor$.

L'ensemble A n'est pas majoré.

Remarquer que $E \subset \left[-\frac{1}{2}, 1 \right[$

17

Revenir à la caractérisation « epsilonesque ou utiliser des suites minimisantes (ou maximisantes).

- On commencera par justifier l'existence de la borne supérieure de l'ensemble $\left\{\frac{1}{a}; a \in A\right\}$.
- Commencer par justifier que sup $A \le \inf B$ puis raisonner par l'absurde (par exemple).
- C Pour une partie non vide de \mathbb{R} majorée et un réel M, sup $A \leq M$ équivaut à $\forall a \in A$, $a \leq M$.

Utiliser (par exemple) la formule du binôme au 2.