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I. Études de continuité

1 � 4 Prolongements par continuité f

On pose f (x) := 1−cos(2πx)

x ln x
pour x ∈R∗+ \ {1}.

1. Justifier la continuité de f surR∗+ \ {1}.

2. Déterminer un équivalent de f en 0. En déduire que f est prolongeable par continuité en 0.

3. La fonction f est-elle prolongeable par continuité en 1 ?

4. Établir que f est bornée surR∗+.

INDICATION : Majorer directement f (x) pour tout x ⩾ 2 et utiliser les 1. et 2. pour x ⩽ 2.

2 � 4 Une expression avec partie entière f

Étudier la continuité surR de la fonction f définie par f (x) = (−1)⌊x⌋ (x −⌊x⌋− 1
2

)
.

3 � 4 Académique ff

Étudier la continuité surR de la fonction f définie par x ∈Q 7→ f (x) = 1−x, x ̸∈Q 7→ f (x) = x.

4 � 4 Une fonction implicite ff

1. Montrer qu’il existe une unique fonction φ :R+ →R+ telle que ∀t ∈R+, φ(t )3 + tφ(t ) = 1.

2. Établir que φ est continue. On pourra écrire l’équation sous la forme t = 1−φ(t )3

φ(t )
·

5 � 4 Une fonction définie implicitement ff

Soit n ∈N∗.

1. Démontrer l’existence et l’unicité de f :R→R telle que ∀x ∈R , f (x)2n+1 + f (x)−x = 0.

2. Justifier que f est continue.

3. Déterminer un équivalent de f (x) quand x tend vers +∞.

6 � 4 Fonctions monotones ff

Soit f : ]0,+∞[→R croissante telle que x 7→ f (x)

x
soit décroissante. Établir que f est continue.
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II. Image continue d’un intervalle

7 � 4 Fonctions continues deR dansZ

Que dire d’une fonction continue f :R→Z ?

8 � 4 Un minimum f

Montrer que f : x 7→ |sin(x)|+ |sin(x +1)| admet un minimum strictement positif surR.

9 � 4 Moyenne arithmétique f

Soit f ∈C 0([0,1],R), n ∈N∗ et (x1, . . . , xn) ∈ [0,1]n . Montrer qu’il existe x ∈R tel que f (x) = 1

n

n∑
k=1

f (xk ).

10 � 4 Étude d’une composée f

Soit f : [0,1] → ]0,1] continue et g :R+ →R strictement croissante telle que g (0) = 0.

Justifier l’existence de µ ∈R∗+ tel que g ◦ f ⩾ µ.

11 � 4 Bornitude f

Soit f :R→R continue et A une partie bornée deR. Montrer que f 〈A〉 est bornée.

12 � 4 Fonctions continues de limite finie en +∞ ff

Soit f : [0,+∞[→R une fonction continue.

1. On suppose que f (x) −−−−−→
x→+∞ +∞. Montrer que f est minorée et y atteint sa borne inférieure.

2. On suppose que f (x) −−−−−→
x→+∞ ℓ ∈R. Montrer que f est bornée.

13 � 4 Fonctions continues qui commutent, X-PC 1994 ff

Soit ( f , g ) ∈C 0 ([0,1], [0,1])2 tel que f ◦ g = g ◦ f . On note f n et g n leurs n-ièmes itérées.

1. On suppose que f > g .

a. Montrer qu’il existe K > 0 tel que ∀x ∈ [0,1], f (x)⩾K+ g (x).

b. Établir que ∀n ∈N, ∀x ∈ [0,1], f n(x)⩾ nK+ g n(x).

2. Montrer qu’il existe c ∈ [0,1] tel que f (c) = g (c).
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14 � 4 Existence d’un plus petit zéro ff

Soit f :R+ →R continue vérifiant f (0) > 0 et f (1) < 0.

1. Justifier l’existence d’un plus petit zéro de f .

2. Donner un exemple de fonction f : ]0,1] →R continue telle que f s’annule mais n’admet pas un plus
petit zéro.

15 � 4 Il pleut des cordes fff

Soit f une fonction de [0,1] dansR. On dit que c > 0 est une corde de f si ∃t ∈ [0,1−c] tel que f (t +c) = f (t ).
Si c est une corde de la fonction f et si t est le point donné par la définition, alors le segment horizontal
joignant les points (t , f (t )) et (t + c, f (t + c)) a ses deux extrémités sur le graphe et sa longueur est c.

1. Soit n ∈N∗ et f ∈C 0([0,1],R) tel que f (0) = f (1). Établir que 1
n est une corde de f .

2. Soit c un réel strictement positif qui n’est pas l’inverse d’un entier naturel non nul. On considère la
fonction f définie sur [0,1] par

f (t ) = t − sin2
(
πt
c

)
sin2

(
π
c

)
a. Montrer que la fonction f est continue, et qu’elle vérifie f (0) = f (1).

b. Justifier que l’équation f (t + c) = f (t ) n’a aucune solution dans [0,1− c].

c. On dit qu’un réel c > 0 est une corde universelle si c est une corde pour toute fonction f ∈C ([0,1],R)
vérifiant f (0) = f (1). Déterminer toutes les cordes universelles.

III. Continuité, injectivité, surjectivité et bijectivité

16 � 4 Injectivité et continuité ff

Les deux questions qui suivent sont indépendantes.

1. Soit f :R→R continue telle que ∀(x, y) ∈R2 ,
∣∣ f (x)− f (y)

∣∣ ⩾ |x − y |.
Établir que f réalise une bijection deR surR.

2. Existe-t-il une fonction f :R→R continue telle que ∀x ∈R , ( f ◦ f )(x) =−x ?

17 � 4 Étude d’une borne inférieure à paramètre ff

Soit f :R→R continue, positive et majorée. Soit a ∈R. On note fa : x 7→ f (x+a) et Fa := {
x ∈R ; fa(x) = x

}
.

1. Démontrer que Fa ̸=∅ et Fa ⊂R+.

2. Justifier l’existence de xa := inf Fa et démontrer que xa ∈ Fa .
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On suppose dans toute la suite de l’exercice que f est strictement décroissante.

3. Établir que δ : x 7→ x − f (x) réalise une bijection deR sur un intervalle que l’on déterminera.

4. Exprimer xa en fonction de a et δ−1(a).

5. L’application a 7→ xa est-elle continue ?

18 � 4 X-PC 2014 fff

Soit f et g dans C 0(R,R) telles que f ◦ g = idR. Montrer que f et g sont bijectives.

IV. Points fixes

19 � 4 Variations sur les points fixes f

Soit f :R→R continue et décroissante surR. Montrer que f admet un unique point fixe.

20 � 4 Points fixes et limites en ±∞ f

Soit ℓ ∈R et f :R→R continue tels que
f (x)

x
−−−−−→
x→±∞ ℓ.

1. On suppose que ℓ ̸= 1. Montrer que f admet un point fixe.

2. La conclusion précédente tient-elle toujours si ℓ= 1 ?

21 � 4 Mines PSI-2016 ff

Soit ( f , g ) ∈C 0(R,R) avec f ◦ g décroissante. Montrer que f ◦ g et g ◦ f admettent un unique point fixe.

22 � 4 Points fixes ff

Soit f : [0,1] →R une fonction 1-lipschitzienne, ie telle que ∀(x, y) ∈ [0,1]2,
∣∣ f (x)− f (y)

∣∣⩽ |x − y |.
Montrer que l’ensemble des points fixes de f est soit vide, soit un segment.

V. Équations fonctionnelles

23 � 4 Un grand classique f

Déterminer les fonctions f :R→R continues en 0 telles que ∀x ∈R, f (2x) = f (x).
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24 � 4 Equation f ◦ f = f ff

Déterminer les fonctions f : [0,1] → [0,1] continues telles que f ◦ f = f .

25 � 4 Une équation fonctionnelle classique ff

Soit f :R→R continue telle que f (x) −−−−−→
x→−∞ −∞ et ∀x ∈R, ( f ◦ f )(x) = f (x)+1.

1. Que vaut f sur I := f 〈R〉 ?

2. En déduire l’expression de f surR.

26 � 4 Une équation fonctionnelle, X-PC 2001 fff

Trouver les fonctions f continues deR dansR telles que ∀(x, y) ∈R2, f
(
x2 + f (y)

)= y + f (x)2.

VI. Problèmes

27 � 4 Autour d’une équation fonctionnelle f

Pour toute fonction f :R→R, on dira que f est solution de E si

∀(x, y) ∈R2 , f (x + y)+ f (x − y) = 2 f (x)+2 f (y)

Partie I – Solutions continues de E

Dans cette partie, on établit quelques propriétés des solutions de E puis on propose deux méthodes de
résolution de E sous l’hypothèse de continuité de f .

1. Soit f :R→R une solution quelconque de E.

a. Calculer f (0) puis démontrer que f est paire.

b. Montrer que pour tous x ∈R et n ∈N, f (nx) = n2 f (x).

c. Montrer que pour tous x ∈R et r ∈Q, f (r x) = r 2 f (x).

d. Montrer que si f est bornée sur un intervalle de la forme ]−α,α[ où α> 0, elle l’est sur tout intervalle
]−A, A[, où A ∈R∗+. INDICATION : Utiliser le I.1.b.

2. Déterminer toutes les solutions de E continues surR.

LLG . HX 6 6
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Partie II – Solutions bornées au voisinage de 0 de E

1. Soit φ :R→R une fonction, p et q dans ]1,+∞[. On suppose que φ est bornée au voisinage de 0 et que

∀x ∈R , φ(px) = qφ(x)

a. Pour tous x ∈R et n ∈N, exprimer φ
(
pn x

)
en fonction de φ(x), q et n.

b. En déduire que φ est continue en 0 en revenant à la définition de la limite.

2. Soit f :R→R une solution de E bornée au voisinage de 0. Soit a un nombre réel fixé.

On note g la fonction x 7→ f (a +x)− f (a)− f (x), définie surR.

a. Montrer que f est continue en 0.

b. Montrer que g (2x) = 2g (x) pour tout x ∈R.

c. Montrer que g est bornée au voisinage de 0.

d. En déduire que f est continue en a. Conclusion ?

28 � 4 Histoires de points fixes ff

Dans ce problème, on considère u et v deux fonctions de [0,1] dans [0,1] continues telles que u ◦ v = v ◦u.

Partie I – Intersection des graphes dans le cas général

L’objectif de cette partie est de montrer que les graphes de u et v sont d’intersection non vide, c’est-à-dire :

∃c ∈ [0,1] , u(c) = v(c)

1. Soit (a,b) ∈R2 tel que a < b et f : [a,b] →R continue telle que que f
〈

[a,b]
〉⊂ [a,b].

Démontrer que f admet un point fixe.

2. Dans cette question, on s’intéresse à l’ensemble F := {
x ∈ [0,1] ; u(x) = x

}
des points fixes de u.

a. Justifier l’existence de m := inf F et M := sup F puis établir que (m,M) ∈ F2.

b. Établir que F est stable par v , c’est-à-dire v〈F〉 ⊂ F.

c. En déduire que u(m)⩽ v(m) et v(M)⩽ u(M) puis conclure.

3. Nous proposons à présent une autre démonstration. On raisonne par l’absurde en supposant que

∀t ∈ [0,1] , u(t ) ̸= v(t )

a. Justifier que, quitte à permuter u et v , on peut supposer que ∀t ∈ [0,1], u(t ) > v(t ).

b. Justifier l’existence de λ> 0 tel que ∀t ∈ [0,1] , u(t ) ⩾ λ+ v(t ).

c. Démontrer que, pour tout n ∈N et t ∈ [0,1], un(t ) ⩾ vn(t )+nλ.

d. Conclure.
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Partie II – Étude du cas où l’une des deux fonctions est monotone

L’objectif est d’établir l’existence d’un point fixe commun à u et v lorsque l’une de ces fonctions est mo-
notone. Quitte à permuter u et v , nous supposerons qu’il s’agit de u.

1. Dans cette question, on suppose u décroissante.

a. Montrer que u possède un unique point fixe.

b. En déduire qu’il s’agit également d’un point fixe de v .

2. Dans cette question, on suppose u croissante.

a. Justifier l’existence d’une suite (an)n∈N à valeurs dans [0,1] telle que :

∀n ∈N , v(an) = an et u(an) = an+1

b. Montrer que la suite (an)n∈N est monotone, puis convergente.

c. Conclure.

Partie III – Étude du cas où l’une des deux fonctions est 1-lipschitzienne

L’objectif est d’établir l’existence d’un point fixe commun à u et v lorsque l’une de ces fonctions est 1-
lipschitzienne. Quitte à permuter u et v , nous supposerons qu’il s’agit de u :

∀(x, y) ∈ [0,1]2 ,
∣∣u(x)−u(y)

∣∣ ⩽ |x − y |
1. On reprend les notations de la question I.1. Démontrer que F = [m,M].

INDICATION : On pourra remarquer que |u(x)−u(m)|⩽ x −m et |u(M)−u(x)|⩽M−x pour x ∈ [m,M].

2. Conclure. INDICATION : On pourra utiliser la partie I.

Partie IV – Ensembles équicontinus et théorème de Cano (de fà fff)

Un ensemble F de fonctions continues de [0,1] dans [0,1] est dit équicontinu en a ∈ [0,1] si

∀ε> 0, ∃δ> 0, ∀ f ∈F , ∀x ∈ [0,1] , |x −a| ⩽ δ =⇒ ∣∣ f (x)− f (a)
∣∣ ⩽ ε

Le même ensemble est dit équicontinu s’il est équicontinu en a, pour tout a ∈ [0,1].

1. On note M := {
pn ; n ∈N}

où, pour tout n ∈N, pn : [0,1] → [0,1], x 7→ xn .

a. Montrer que M est équicontinu en 0.

b. Montrer que M n’est pas équicontinu en 1.

c. Soit a ∈ ]0,1[. L’ensemble de fonctions M est-il équicontinu en a ?

2. Soit u : [0,1] → [0,1] une fonction 1-lipschitzienne. Démontrer que
{

un ; n ∈N}
est équicontinu.

On suppose dans toute la suite que l’ensemble
{

un ; n ∈N}
des itérées de u est équicontinu, et on

cherche à montrer que l’ensemble F (défini au I.2.) est un intervalle. On raisonne par l’absurde en sup-
posant que F n’est pas un intervalle.

LLG . HX 6 8
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3. Montrer qu’il existe (a,b) ∈ F2 tels que a < b et ∀x ∈ ]a,b[, u(x) > x ou ∀x ∈ ]a,b[, u(x) < x.

4. On suppose dans cette question que ∀x ∈ ]a,b[, u(x) > x.

a. Montrer l’existence de a′ ∈ ]a,b[ tel que ∀n ∈N,
∣∣un(a′)−a

∣∣ ⩽ b −a

2
·

b. Démontrer l’existence de c dans ]a,b[ tel que u(c) > b.

INDICATION : Raisonner par l’absurde. Montrer que un(a′) −−−−−→
n→+∞ b. On remarquera que cette suite

vérifie la relation de récurrence yn+1 = u(yn) afin d’étudier sa monotonie puis conclure.

c. En déduire l’existence de x0 dans ]a,b[ tel que u(x0) = b.

d. En réitérant ce procédé, on construit facilement une suite strictement décroissante (xn)n∈N d’élé-
ments de ]a,b[ tels que u(x0) = b et ∀n ∈N∗ , u(xn) = xn−1. Justifier que xn −−−−−→

n→+∞ a.

e. Déterminer un+1(xn) pour tout n ∈N.

f. En déduire une absurdité. INDICATION : Chercher du côté de l’équicontinuité de
{

un ; n ∈N}
en a.

5. En déduire une généralisation du théorème démontré dans la partie IV.

LLG . HX 6 9
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VII. Indications

1 �

Passer par des équivalents.

2 �

Afin d’étudier la continuité en x0 ∈R, distinguer les cas x0 ∈Z et x0 ̸∈Z. La fonction est continue en tout
point.

3 �

La fonction est continue en 1
2 , discontinue en tout autre point deR. On pourra utiliser le critère séquentiel

ainsi que la densité deQ etR\Q dansR.

4 �

Il s’agit d’une fonction définie implicitement. Aidez-vous d’une bijection.

5 �

On pourra s’aider de g :R→R définie par g (y) := y2n+1 + y .

6 �

Passer par les limites à gauche et à droite.

7 �

On conjecture que f est constante.

8 �

La fonction est périodique.

9 �

Quitte à permuter les xi , ce qui ne change pas la moyenne des f (xi ), vous pouvez supposer que l’on a
f (x1)⩽ f (x2)⩽ . . .⩽ f (xn).

10 �

Appliquer le théorème de Weierstrass à g .

11 �

Appliquer le théorème de Weierstrass.

LLG . HX 6 10
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12 �

Se ramener au théorème de Weierstrass.

13 �

Au 1., considérer K := min( f − g ) puis raisonner par récurrence sur n. Raisonner par l’absurde au 2.

14 �

Au 1., considérer une suite minimisante de
{

x ∈ [0,1] ; f (x) = 0
}
.

15 �

Utiliser t 7→ f
(
t + 1

n

)− f (t ).

16 �

Remarquer que, dans les deux cas, f est injective.

17 �

Utiliser une suite minimisante pour établir que la borne inférieure de Fa est un minimum.

18 �

Remarquer que g injective donc strictement monotone puis en déduire le comportement de g en ±∞.

19 �

Utiliser la fonction g : x → f (x)−x.

20 �

Pour tout réel x non nul, poser g (x) = f (x)−x
x = f (x)

x −1.

21 �

S’intéresser à δ : x 7→ ( f ◦ g )(x)−x. Construire un point fixe de g ◦ f à partir d’un point fixe de f ◦ g .

22 �

En supposant l’ensemble K des points fixes de f non vide, montrer qu’il est convexe : ie si f (x) = x et
f (y) = y , alors pour tout z ∈ [x, y], f (z) = z. Exploiter la continuité de f pour montrer que K est fermé.

23 �

Que dire de la suite
(

f
( x

2n

))
n⩾0

?

LLG . HX 6 11
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24 �

Reconnaître f sur f ([0,1]).

25 �

Remarquer que I est un intervalle : lequel exactement ?

26 �

Montrer qu’une solution f est nécessairement bijective, impaire et strictement croissante. Déduire de la
relation f ◦ f = id que f = id.

27 �

Au II.2.c., choisir A de façon à vérifier l’implication : −1 < x < 1 =⇒ −A < x +a < A.

28 �

Au I.2.a., on pourra utiliser le critère séquentiel sur les bornes.

LLG . HX 6 12
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VIII. Solutions

1 �

1. La fonction f est continue sur R∗+ \ {1} par opérations sur les fonctions continues (quotient de deux
fonctions continues, le dénominateur étant un produit de fonctions continues).

2. On a f (x) ∼
1
2×(2πx)2

x ln x = 2π2x
ln x · Comme x

ln x −−−→
x→0

0 (opérations sur les limites), on a f (x) −−−→
x→0

0 et f est

prolongeable par continuité en 0 en posant f (0) := 0.

3. On a f (1+u) = 1−cos(2πu)
(1+u) ln(1+u) ∼

1
2×(2πu)2

u = 2π2u d’où f (1+u) −−−→
u→0

0. Ainsi f est prolongeable par conti-

nuité en 1 en posant f (1) := 0.

4. Notons f le prolongement continu de f àR+.

Pour x ⩾ 2, on a x ln x ⩾ 2ln2 et∣∣ f (x)
∣∣ = ∣∣∣∣1−cos(2πx)

x ln x

∣∣∣∣ = |1−cos(2πx)|
x ln x

⩽
1+|cos(2πx)|

2ln2
⩽

2

2ln2
= 1

ln2

Comme f est continue, f est bornée sur le segment [0,2].

Ainsi f est bornée surR+.

2 �

La fonction x 7→ (−1)⌊x⌋ est constante au voisinage de tout point non entier donc continue en ces points.
La fonction x 7→ x −⌊x⌋−1/2 est également continue en tout point non entier. Ainsi f est continue en
tout point non entier (opérations sur les fonctions continues).

Soit n ∈Z.

Pour x ∈ [n −1,n[, ⌊x⌋ = n −1 donc lim
x→n− f (x) = (−1)n−1

(
n − (n −1)− 1

2

)
= (−1)n−1 1

2
·

Pour x ∈ [n,n +1[, ⌊x⌋ = n donc lim
x→n+ f (x) = (−1)n

(
n −n − 1

2

)
= (−1)n−1 1

2
·

Ainsi lim lim
x→n− f (x) = lim

x→n+ f (x) = f (n) = (−1)n−1 1

2
: f est continue en n.

Finalement f est continue surR.

3 �

Pour tout réel x ∈R, on a
∣∣ f (x)− 1

2

∣∣ ⩽ ∣∣x − 1
2

∣∣. Ainsi f (x) −−−→
x→ 1

2

1
2 = f

(1
2

)
par le théorème d’encadrement :

f est continue en 1
2 ·

Soit x0 ∈R\
{1

2

}
. Par densité deQ etR\Q dansR, il existe (rn)n∈N ∈QN et (in)n∈N ∈ (R\Q)N convergeant

vers x0. Pour tout n ∈N, f (rn) = 1− rn et f (in) = in . Ainsi f (in) −−−−−→
n→+∞ x0 et f (rn) −−−−−→

n→+∞ 1− x0 ̸= x0. La

fonction f n’est donc pas continue au point x0.
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4 �

1. Fixons t ∈ R+ et considérons f : R+ → R définie par f (x) = x3 + t x − 1. La fonction f est strictement
croissante (somme de deux fonctions strictement croissantes) et continue (opérations sur les fonctions
continues) donc par le corollaire du TVI, f réalise une bijection deR+ sur [−1,+∞[ : l’équation f (x) = 0
admet donc une seule solution surR+. D’où l’existence et l’unicité de la fonction φ.

2. Soit g la fonction définie sur ]0,1] par g (x) = x−1 − x2. Sur ]0,1], g est continue (opérations sur les
fonctions continues) et strictement décroissante (somme de deux fonctions strictement décroissante).
Comme g (x) −−−−→

x→0+ +∞ et g (1) = 0, on déduit du corollaire du TVI que g réalise une bijection de ]0,1]

surR+. L’équation définissant φ s’écrivant g ◦φ= idR+ , on a φ= g−1 et φ est donc continue.

5 �

1. Soit g :R→R définie par g (y) := y2n+1 + y . Cette fonction est continue en tant que fonction polyno-
miale et strictement croissante sur R en tant que somme de fonctions strictement croissantes sur cet
intervalle. Comme g (y) −−−−−→

y→+∞ +∞ et g (y) −−−−−→
y→−∞ −∞, on déduit du corollaire du théorème des valeurs

intermédiaires que g réalise une bijection strictement croissante de R sur lui-même. Ainsi, pour tout
réel x, il existe un unique y ∈R tel que g (y) = x, ce réel est g−1(x). Il existe donc une unique fonction
f :R→R telle que ∀x ∈R , f (x)2n+1 + f (x)−x = 0 et f = g−1.

2. Comme f = g−1 est g est continue deR dansR, f est continue surR.

3. On sait que f (x) = g−1(x) −−−−−→
x→+∞ +∞ car g (x) −−−−−→

x→+∞ +∞. Ainsi f (x) = o
(

f (x)2n+1
)

en +∞ d’où

x = f (x)+ f (x)2n+1 ∼x→+∞ f (x)2n+1

puis f (x) ∼ x
1

2n+1 quand x tend vers +∞.

6 �

Soit x0 ∈R∗+.

Pour tout x ⩾ x0, on a f (x0) ⩽ f (x) ⩽ x
x0

f (x0) par croissance de f et décroissance de x 7→ f (x)
x · Par le

théorème d’encadrement, on en déduit que f (x) −−−−→
x→x+

0

f (x0).

Pour tout x ⩽ x0, on a f (x0) ⩾ f (x) ⩾ x
x0

f (x0) par croissance de f et décroissance de x 7→ f (x)
x · Par le

théorème d’encadrement, on en déduit que f (x) −−−−→
x→x−

0

f (x0).

La fonction f est donc continue en x0.

7 �

L’ensemble f 〈R〉 est un intervalle de R (par le théorème des valeurs intermédiaires) et non vide. Comme
les seuls intervalles réels non vides inclus dansZ sont les singletons, f est constante.
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8 �

La fonction f étant π-périodique et continue, f 〈R〉 = f
〈

[0,π]
〉

est un segment (théorème de Weierstrass) : f
admet un minimum surR. Soit x0 ∈ [0,π] un réel où f atteint son minimum. Supposons sin x0 = 0. Il existe
alors n ∈Z tel que x0 = nπ et donc sin(1+nπ) = (−1)n sin1 ̸= 0. On en déduit que f (x0) > 0.

9 �

Posons m = 1
n

∑n
k=1 f (xk ). Quitte à permuter les xi , ce qui ne change pas la valeur de m, on peut supposer

f (x1) ⩽ f (x2) ⩽ . . . ⩽ f (xn). On a alors f (x1) ⩽ m ⩽ f (xn). D’après le théorème des valeurs intermédiaires,
il existe x ∈ [x1, xn] ⊂ [0,1] tel que f (x) = m.

10 �

Comme f est continue sur le segment [0,1], on déduit du théorème de Weierstrass qu’il existe a ∈ [0,1]
tel que f ⩾ f (a).

Par croissance de g , on en déduit que g ◦ f ⩾ (g ◦ f )(a).

Comme f est à valeurs dans ]0,1], f (a) > 0 et par stricte croissance de g , on a (g ◦ f )(a) > g (0) = 0

11 �

Comme A est bornée, il existe deux réels m < M tels que A ⊂ [m,M] d’où f 〈A〉 ⊂ f
〈

[m,M]
〉

. Puisque f est
continue, f

〈
[m,M]

〉
est bornée (par le théorème de Weierstrass) donc f 〈A〉 l’est aussi.

12 �

1. Il existe M > 0 tel que ∀x ⩾M , f (x) > f (0). Ainsi f est minorée sur [M,+∞[. Par le théorème de Weiers-
trass, f est minorée sur le segment [0,M] et y atteint sa borne inférieure. Ainsi f est minorée sur [0,+∞[
et puisque f (0)⩾minx∈[A,M] f (x), le minimum de f sur [0,M] est aussi le minimum de f sur [0,+∞[.

2. Il existe M > 0 tel que ∀x ⩾ M , ℓ+1 > f (x) > ℓ−1. Ainsi f est bornée sur [M,+∞[. Par le théorème de
Weierstrass, f est bornée sur le segment [0,M]. Ainsi f est bornée sur [0,+∞[.

13 �

1. a. Par le théorème de Weierstrass, δ := f − g étant continue sur le segment [0,1], il existe c ∈ [0,1] tel
que δ⩾ δ(c) = minδ. Le réel K := δ(c) convient donc.

b. Prouvons la propriété par récurrence sur n ∈N.

L’initialisation en n = 0 est évidente.

Soit n ∈N. Supposons que ∀x ∈ [0,1], f n(x) ⩾ nK + g n(x). Soit x ∈ [0,1]. Comme f (x) et g n(x)
appartiennent à [0,1], on a

f n+1(x)⩾ nK+ g n (
f (x)

) = nK+ f
(
g n(x)

)
⩾ nK+K+ g

(
g n(x)

) = (n +1)K+ g n+1(x)

car f et g commutent. La propriété est donc vraie au rang n +1.
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2. Raisonnons par l’absurde. Supposons que ∀x ∈ [0,1] , f (x) ̸= g (x). La fonction δ := f −g étant continue
et ne s’annulant pas sur l’intervalle, elle y garde un signe constant par le théorème des valeurs inter-
médiaires. quitte à permuter f et g , on est ramené au cas du 1. dont on reprend les notations. On a
f n(0)⩾ nK pour tout n ∈N d’où f n(0) −−−−−→

n→+∞ +∞. Ceci est absurde car ∀n ∈N, f n(0) ∈ [0,1].

14 �

1. On déduit du théorème des valeurs intermédiaires que Z := {
x ∈ [0,1] ; f (x) = 0

}
est non vide. Puisque

Z est minoré par 0, il admet une borne inférieure m. Il existe donc (xn)n∈N ∈ ZN telle que xn −−−−−→
n→+∞ m.

On a f (xn) −−−−−→
n→+∞ f (m) par continuité de f en m. Puisque f (xn) = 0 pour tout n ∈N, on en déduit par

passage à la limite que f (m) = 0. D’où l’existence d’un plus petit zéro de f .

2. Il suffit de considérer f : x 7→ 0.

15 �

1. Pour t ∈ [
0,1− 1

n

]
, posons g (t ) := f

(
t + 1

n

)− f (t ). Comme
∑n−1

k=0 g
(

k
n

)
= 0, il existe (p, q) ∈ �0,n −1�2 tels

que g
(p

n

)
⩽ 0 ⩽ g

( q
n

)
. On déduit du théorème des valeurs intermédiaires l’existence de t ∈ [0,1−1/n]

tel que g (t ) = 0.

2. a. La fonction est continue sur [0,1] en tant que somme de deux fonctions continues sur ce segment.
De plus, on a clairement f (0) = f (1) = 0.

b. Pour tout t dans [0,1], on a f (t+c) = f (t )+c. L’équation f (t+c) = f (t ) n’admet donc aucune solution
sur [0,1].

c. On déduit des questions précédentes que les seules cordes universelles sont les inverses des entiers
naturels non nuls.

16 �

1. On déduit de l’inégalité vérifiée par f que cette fonction est injective surR. Puisqu’elle est continue sur
l’intervalleR, on déduit du cours que f est strictement monotone.

2. Supposons f strictement croissante. Pour x ∈R+, on a f (x) ⩾ f (0)+ x d’où f (x) −−−−−→
x→+∞ +∞. Pour

x ∈R−, on a − f (x)⩾− f (0)−x d’où f (x) −−−−−→
x→−∞ −∞.

Supposons f strictement décroissante. La fonction− f est strictement croissante et vérifie les mêmes
hypothèses que f , donc par le point précédent f (x) −−−−−→

x→−∞ +∞ et f (x) −−−−−→
x→+∞ −∞.

Dans les cas, on déduit du corollaire du théorème des valeurs intermédiaires que f réalise une bijection
deR surR.

3. Raisonnons par l’absurde : soit f :R→R continue telle que f 2 =−idR.

Soit (x, y) ∈R2 tel que f (y) = f (x). On a alors f 2(y) = f 2(x) par application de f , d’où y = x. On en
déduit que f est injective et, puisqu’elle est continue sur l’intervalleR, f est strictement monotone.

Comme f est strictement monotone, f 2 est strictement croissante ce qui est absurde car f 2 est stric-
tement décroissante.
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17 �

1. Notons ua : x 7→ x − f (x +a). Cette fonction est continue sur R (somme de deux fonctions continues).
Comme f est positive, on a ua(x) −−−−−→

x→−∞ −∞. Comme f est majorée, on a ua(x) −−−−−→
x→+∞ +∞. On déduit

du théorème des valeurs intermédiaires, l’existence de y ∈ R tel que ua(y) = 0, ie f (y + a) = y . Ainsi
Fa ̸=∅. Comme f est positive, on a ua(x) < 0 pour tout x ∈R∗−. Ainsi Fa = {

y ∈R ; ua(y) = 0
}⊂R+.

2. L’ensemble Fa est une partie deR non vide et minorée par 0 (cf. la question précédente). On en déduit
l’existence de xa := inf Fa . Soit (yn)n∈N ∈ FNa telle que yn −−−−−→

n→+∞ xa . On a f (xn + a) = xn (⋆) pour tout

n ∈N. Comme f est continue en a +xa , on a f (xn +a) −−−−−→
n→+∞ f (a +xa) et on déduit de (⋆) par passage

à la limite que f (xa +a) = xa , d’où xa ∈ Fa .

3. La fonction δ := u0 est strictement croissante en tant que somme de deux fonctions strictement crois-
santes, continue, de limite +∞ (resp. −∞) en +∞ (resp. −∞) d’après l’étude fait précédemment de u0.
On déduit du corollaire du théorème des valeurs intermédiaires que δ réalise une bijection deR sur un
intervalle que l’on déterminera.

4. On a f (xa +a)+a = xa +a d’où δ(xa +a) = a d’où xa +a = δ−1(a) d’où xa = δ−1(a)−a.

5. Comme δ est continue surR, sa bijection réciproque est continue sur δ(R) =R ainsi a 7→ xa est conti-
nue en tant que somme de deux fonctions continues.

18 �

Comme f ◦ g est injective (resp. surjective), g est injective (resp. f est surjective).

Comme g est injective et continue sur R, g est strictement monotone. On déduit du théorème de la
limite monotone que g admet des limites ℓ− et ℓ+ dansR en −∞ et +∞.

Raisonnons par l’absurde en supposant que ℓ+ ∈R. On a g (x) −−−−−→
x→+∞ ℓ+ et f (y) −−−−→

y→ℓ+
f (ℓ+) par conti-

nuité de f en ℓ+, d’où ( f ◦ g )(x) −−−−−→
x→+∞ f (ℓ+) ∈ R par composition des limites. Ceci est absurde car

f ◦ g = idR. De même, on démontre que ℓ− ̸∈R. Ainsi (ℓ−,ℓ+) = (−∞,+∞) ou (ℓ−,ℓ+) = (+∞,−∞).

La fonction g réalise dans une bijection de R sur R par le corollaire du théorème des valeurs intermé-
diaires. On a donc f = ( f ◦ g )◦ g−1 = g−1 est bijective.

19 �

Posons ∀x ∈ R, g (x) = f (x) − x. La fonction f étant décroissante sur R, elle admet en +∞ une limite
l+ ∈R∪ {−∞}. Ainsi lim

x→+∞g (x) =−∞. On montre de même que lim
x→−∞g (x) =+∞. Le théorème des valeurs

intermédiaires permet alors de conclure que g (R) =R. En particulier 0 admet un antécédent x0 par g , d’où
f (x0) = x0. L’unicité vient de la stricte décroissance de g .

20 �

1. Posons δ :R→R, x 7→ f (x)−x. On a δ(x)
x −−−−−→

x→±∞ ℓ−1.
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Cas 1 : ℓ > 1. Il existe A > 0 et B < 0 tel que ∀x ⩾ A , δ(x)
x > 0 et ∀x ⩽ B , δ(x)

x > 0. En particulier
δ(A)δ(B) < 0. Puisque δ est continue (somme de fonctions continues), on déduit du théorème des
valeurs intermédiaires que δ s’annule en un point deR, d’où l’existence d’un point fixe de f .

Cas 2 : ℓ < 1. On adapte sans peine la preuve donnée dans le premier cas (il suffit d’échanger
quelques signes).

2. La conclusion n’est plus valable en général comme le prouve le contre-exemple suivant : f : R→ R,
x 7→ x +1

21 �

Par le théorème de la limite monotone, f ◦ g admet une limite valant −∞ ou un réel (resp. +∞ ou un
réel) en +∞ (resp. −∞).

La fonction δ :R→R, x 7→ ( f ◦g )(x)−x est strictement décroissante (somme d’une fonction décroissante
et d’une fonction strictement décroissante), δ(x) −−−−−→

x→−∞ +∞ et δ(x) −−−−−→
x→+∞ −∞ d’après le point précé-

dent. Comme δ est continue (somme de fonctions continues), on déduit du corollaire du théorème des
valeurs intermédiaires que δ réalise une bijection de R sur lui-même. La fonction δ s’annule donc une
seule fois surR : f ◦ g admet un unique point fixe.

Notons α l’unique point fixe de f ◦g . On a alors g (α) est un point fixe de g ◦ f . Soit β ∈R un point fixe de
g ◦ f . On a (g ◦ f )(β) = β d’où f (β) est un point fixe de f ◦ g . Ainsi f (β) = α d’où g (α) = β, ce qui prouve
l’unicité du point fixe de g ◦ f .

22 �

Notons K l’ensemble des points fixes de f . Supposons K ̸=∅.

Soit (x, y) ∈ K2 tel que x < y . Soit z ∈ ]x, y[. Raisonnons par l’absurde. Supposons f (z) ̸= z.

Supposons f (z) > z. On a alors f (z)− f (x)
z−x > z−x

z−x > 1.

Supposons f (z) < z. On a alors f (y)− f (z)
y−z > z−x

z−x > 1.

Ceci est absurde car f est 1-lipschitzienne. L’ensemble K est donc convexe, c’est un intervalle deR.

Comme K ⊂ [0,1] et K ̸= ∅, K admet des bornes inférieure et supérieure. Soit µ = infK et (kn)n∈N ∈KN
telle que kn −−−−−→

n→+∞ µ. Comme ∀n ∈N, f (kn) = kn , on obtient pas passage à la limite f (µ) = µ par conti-

nuité de f en µ. Ainsi µ ∈ K. On prouve par un raisonnement analogue que supK ∈ K.

L’ensemble K est donc un segment.

23 �

ANALYSE. Soit f une solution. Par une récurrence facile, on prouve que ∀n ∈N , f
( x

2n

) = f (x) (⋆). Par
continuité de f en 0, on a f ( x

2n ) −−−−−→
n→+∞ f (0). Par passage à la limite dans (⋆), on obtient donc f (x) = f (0).

La fonction f est donc constante.

SYNHTÈSE. Toute fonction constante vérifie clairement l’équation initiale.
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24 �

On effectue une Analyse-Synthèse.

ANALYSE. Soit f une solution. On note S = f ([0,1]).

L’ensemble S est un segment de R en tant qu’image du segment [0,1] par l’application continue f .
Comme f est à valeurs dans [0,1], on a S ⊂ [0,1]. On le notera S = [a,b], avec a = mint∈[0,1] f (t ) et
b = maxt∈[0,1] f (t ).

En particulier la restriction de f à [0, a] (resp. [b,1]) est un élément de C 0([0, a], [a,b]) (resp. C 0([b,1], [a,b])).

SYNTHÈSE. Soit (a,b) ∈ [0,1]2 tel que a ⩽ b, (g ,d) ∈ C 0([0, a], [a,b])×C 0([b,1], [a,b]) tel que g (a) = a et
d(b) = b. Soit f : [0,1] →R définie par :

∀t ∈ [a,b], f (t ) = t . ∀t ∈ [0, a], f (t ) = g (t ). ∀t ∈ [b,1], f (t ) = d(t ).

On vérifie facilement que f est continue sur [0,1] (le raccord se fait bien par continuité en a et b). De
plus, pour t ∈ [0,1], f (t ) ∈ [a,b] d’où f

(
f (t )

)= f (t ). Ainsi f est solution.

25 �

1. Soit y ∈ I. Il existe x ∈R tel que y = f (x) d’où f (y) = y +1.

2. Par le TVI, I est un intervalle de R. Comme f (x) −−−−−→
x→−∞ −∞, I n’est pas minoré. Soit a ∈ I. Pour tout

n ∈N, on a f n(a) = a+n par la question précédente. On en déduit que I n’est pas majoré. Ainsi I =R et
∀y ∈R, f (y) = y +1.

26 �

ANALYSE. Soit f une solution.

On a ∀y ∈R, ( f ◦ f )(y) = y + f (0)2. Comme f ◦ f est injective, f est injective.

Soit x ∈R∗. On a f (−x)2 = f
(
(−x)2 + f (0)

)= f
(
x2 + f (0)

)= f (x)2. Ainsi f (−x) =± f (x). Puisque −x ̸=
x et f est injective, on a f (−x) = − f (x). Par continuité de f en 0, on en déduit que f (0) = − f (0), ie
f (0) = 0. Ainsi f est impaire.

Comme f est continue et injective sur R, elle est strictement monotone. Puisque f est injective et
f (0) = 0, on a f (1) ̸= 0 d’où f (1) = f (12 +0) = f (1)2 > 0 = f (0), f est strictement croissante.

On a donc ∀y ∈R, ( f ◦ f )(y) = y . Soit y ∈R. Raisonnons par l’absurde en supposant que f (y) ̸= y .

Cas 1 : f (y) > y . On a alors f 2(y) > f (y) > y par stricte croissance de f : c’est absurde.

Cas 2 : y > f (y). On a alors f 2(y) < f (y) < y par stricte croissance de f : c’est absurde.

On en déduit que f = idR.

SYNTHÈSE. La fonction idR est clairement solution.

La fonction idR est l’unique solution au problème.
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27 �

Partie I – Solutions continues de E

1. Soit f :R→R une solution de E.

a. En choisissant (x, y) = (0,0), on obtient f (0) = 0. Pour y ∈R, on obtient donc f (y)+ f (−y) = 2 f (y),
i.e. f (−y) = f (y). Ainsi f est paire.

b. Soit x ∈R. On démontrer que ∀n ∈N, f (nx) = n2 f (x) par récurrence forte sur n.

L’initialisation est claire car f (0) = 0 et f (1×x) = 1× f (x).

Soit n ∈N∗. Supposons la propriété vraie jusqu’au rang n. On a

f ((n +1)x) = f (nx +x) = 2 f (nx)+2 f (x)− f (nx −x) = 2n2 f (x)+2 f (x)− (n −1)2 f (x)

= (
2n2 +2−n2 +2n −1

)
f (x) = (n +1)2 f (x)

d’où la formule au rang n +1.

c. Soit x ∈R et (p, q) ∈N×N∗. On a f
(

p
q x

)
= p2 f

(
x
q

)
la question précédente. De plus f

(
x
q

)
= f (x)

q2 car,

par la question précédente :

f (x) = f

(
q

x

q

)
= q2 f

(
x

q

)
Ainsi f

(
p
q x

)
= p2

q2 f (x) puis, par parité de f (cf. la question I.1.a.), ∀r ∈Q, f (r x) = r 2 f (x).

d. Supposons que f est bornée au voisinage de 0. il existe alors α> 0 et M ∈R+ tels que

∀x ∈ ]−α,α[ ,
∣∣ f (x)

∣∣ ⩽ M

Soit A dans R∗+. Comme nα −−−−−→
n→+∞ +∞, il existe n0 ∈N∗ tel que n0α > A. Soit x ∈ ]−A, A[. Comme

x
n0

∈ ]−α,α[, on a ∣∣ f (x)
∣∣= n2

0

∣∣∣∣ f

(
x

n0

)∣∣∣∣⩽ n2
0M

par la question I.1.b. Ainsi, f est bornée sur ]−A, A[.

2. Soit f solution continue de E. Soit x ∈ R. Par densité de Q dans R, il existe (rn)n∈N ∈ QN tel que
rn −−−−−→

n→+∞ x. Comme f (rn) = r 2
n f (1) (cf. la question I.1.b.) pour tout n ∈ N. On obtient f (x) = x2 f (1)

par passage à la limite dans cette relation, par continuité de f en x. Réciproquement, toute fonction de
la forme x 7→ λx2 est clairement solution.

Partie II – Solutions bornées au voisinage de 0 de E

1. a. Soit x ∈R. On démontre par récurrence sur n ∈N que φ(x) = φ
(
pn x

)
qn

·

La propriété est banale au rang 0 car p0 = q0 = 1.
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Soit n ∈N. Supposons la propriété vraie au rang n. On a

φ
(
pn+1x

)= qφ
(
pn x

)= qn+1φ(x)

‘d’où la formule rang n +1.

b. Soit α > 0 et M > 0 tels que ∀x ∈ ]−α,α[,
∣∣φ(x)

∣∣ ⩽ M. Soit ε > 0. Comme qn −−−−−→
n→+∞ +∞, il existe

n0 ∈N tel que M
qn ⩽ ε. Pour x ∈

]
− α

pn0 , α
pn0

[
, on a donc

∣∣φ(x)
∣∣= ∣∣∣∣φ

(
pn0 x

)
qn0

∣∣∣∣⩽ M

qn0
⩽ ε

Ainsi φ(x) −−−→
x→0

0. Comme φ(0) = 0 (évaluez dans l’équation en x = 0), φ est continue en 0.

2. a. On déduit du I.1.b. que, pour tout x ∈R, f (2x) = 4 f (x). Ainsi, par la question II.1., f est continue en
0.

b. Soit x ∈R. On a

g (2x) = f (a +2x)− f (a)− f (2x) = f (a +x +x)− f (a)−4 f (x) = 2 f (a +x)+2 f (x)− f (a)− f (a)−4 f (x)

= 2
(

f (a +x)− f (a)− f (x)
)= 2g (x)

c. Notons A := max(|a −1|, |a +1|). On sait que f est bornée sur ]−A, A[ par le I.1.d. Ainsi x 7→ f (x +a)
est bornée sur ]−1,1[ tout comme x 7→ f (x) (toujours par le I.1.d.) donc g est aussi bornée sur ]−1,1[
en tant que somme de fonctions bornées sur cet intervalle.

Commentaire

On a choisit A de façon à vérifier l’implication : −1 < x < 1 =⇒ −A < x +a < A.

d. On déduit des deux questions précédentes et su II.1. que g est continue en 0. Ainsi, par continuité
de f en 0 (cf ; Le II.2.a.) f (x+a)− f (a) = g (x)+ f (x) −−−→

x→0
g (0)+ f (0) = 0 par opérations sur les limites.

Ainsi f est continue en a. On en déduit que f est continue surR donc f est de la forme x 7→ ax2 par
la partie I.

28 �

Partie I – Intersection des graphes dans le cas général

1. Soit δ la fonction de [a,b] dans R définie par δ(x) := f (x)− x ; δ est continue en tant que différence de
deux fonctions continues. Comme [a,b] est stable par f , on a δ(a) = f (a)−a ⩾ 0 et δ(b) = u(b)−b ⩽ 0.
On déduit du théorème des valeurs intermédiaires l’existence de c dans [a,b] tel que δ(c) = 0.

2. a. L’ensemble F non vide (par la question précédente appliquée à u sur [0,1]), majoré et minoré (car
inclus dans [0,1]), il admet donc des bornes supérieure et inférieure ; nous les noterons m et M.
Soit (cn)n∈N ∈ FN tel que cn −−−−−→

n→+∞ m. Par continuité de f en m, on a f (cn) −−−−→
n→∞ f (m). Comme

cn = f (cn) pour tout n ∈N, on en déduit par passage à la limite quand n →+∞ que f (m) = m. Ainsi
m ∈ F. On démontre de même que M ∈ F.
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b. Soit x ∈ F. On a u (v(x)) = v (u(x)) = v(x). Ainsi v(x) ∈ F. L’ensemble F est donc stable par v .

c. Comme (m,M) ∈ F2 et F est stable par v , on en déduit que infF = m ⩽ v(m) et v(M)⩽M = supF. On
a m = u(m) et M = u(M). Ainsi, u(m)⩽ v(m) et v(M)⩽ u(M). La fonction f := u−v est continue sur
[m,M] et vérifie f (M)⩾ 0 et f (m)⩽ 0, on déduit du théorème des valeurs intermédiaires l’existence
de c dans [m,M] tel que f (c) = 0, i.e. u(c) = v(c).

3. a. Posons f := u − v . Comme f ne s’annule pas et est continue sur l’intervalle [0,1] (en tant que diffé-
rence de deux fonctions continues), on déduit du théorème des valeurs intermédiaires que f est de
signe constant sur [0,1]. Ainsi u − v > 0 ou v −u > 0.

b. La fonction continue f = u−v admet un minimumµ sur le segment [0,1] par le théorème de Weiers-
trass. Comme f > 0, on a µ> 0 et donc ∀t ∈ [0,1] , u(t ) ⩾ λ+ v(t ).

c. Prouvons la propriété par récurrence sur n.

La propriété est clairement vraie pour n = 0 et n = 1.

Soit n ∈N. Supposons la propriété vraie au rang n. Soit t ∈ [0,1]. Comme u(t ) ∈ [0,1], on a

un+1(t ) ⩾ vn (u(t ))+nλ︸ ︷︷ ︸
= u

(
vn(t )

)+nλ

car u◦vn = vn◦u. Comme u (vn(t )) ⩾ v (vn(t ))+λ, on en déduit que un+1(t ) ⩾ vn+1(t )+(n+1)λ,
i.e. l’hypothèse au rang n +1.

d. On déduit de la question précédente que un(0) ⩾ λn pour tout n ∈N. Comme λ > 0, on en déduit
que un(0) −−−−→

n→∞ +∞. Ceci est absurde car un(0) ∈ [0,1] pour tout n ∈N.

Partie II – Étude du cas où l’une des deux fonctions est monotone

1. a. On reprend les notations et la démonstration du I.1. dans le cas où f := u et (a,b) := (0,1). Comme
u est décroissante, δ : x 7→ u(x)− x est strictement décroissante : le point où δ s’annule est donc
unique.

b. Notons c l’unique point fixe de u. On a v(c) = v (u(c)) = u (v(c)), ainsi v(c) est un point fixe de u,
d’où u(c) = c par unicité de celui-ci.

2. a. Notons F′ l’ensemble des points fixes de v . Par symétrie des hypothèses sur u et v du I.1.a., on
déduit du I.1.a. que G est non vide. il existe donc a0 ∈ F′. On considère alors la suite (an)n∈N définie
par ∀n ∈N, an+1 = u(an). Elle existe bien car [0,1] est stable par u. De plus, comme F′ est stable par
u (cf. le I. ?.) et a0 ∈ F′, on prouve par une récurrence facile que ∀n ∈N, an ∈ G, i.e. v(an) = an .

b. Supposons a1 ⩽ a0. Démontrons que ∀n ∈N, an+1 ⩽ an . Soit n ∈N. Supposons an+1 ⩽ an . On a
donc u(an+1) ⩽ u(an) par croissance de u, d’où an+2 ⩽ an+1 et la propriété est vraie au rang n +1.
On démontre de même que si a0 ⩽ a1, alors la suite (an)n∈N est croissante. La suite (an)n∈N est
donc monotone et bornée (car elle est à valeurs dans [0,1]), elle converge donc par le théorème de
la limite monotone.

c. Notons ℓ la limite de (an)n∈N. Comme u et v sont continues en ℓ, on a

u(an) −−−−−→
n→+∞ u(ℓ) et v(an) −−−−−→

n→+∞ v(ℓ)
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On obtient donc u(ℓ) = ℓ et ℓ= v(ℓ) par passage à la limite n →+∞ dans les relations de récurrence
∀n ∈N, an = u(an) et an+1 = v(an). Ainsi ℓ est un point commun à u et v .

Partie III – Étude du cas où l’une des deux fonctions est 1-lipschitzienne

1. Soit x ∈ [m,M]. On a
u(x)−u(m) ⩽ |u(x)−u(m)| ⩽ |x −m| = x −m

Comme u(m) = m, on en déduit que u(x)⩽ x. De plus :

u(M)−u(x) ⩽ |u(M)−u(x)| ⩽ |M−x| = M−x

Comme u(M) = M, on obtient u(x) ⩾ x. Ainsi u(x) = x d’où [m,M] ⊂ F. L’inclusion réciproque est vraie
car m et M sont les bornes inférieures et supérieures de F.

2. Comme F = [m,M] est stable par v (cf. le I.2.b.), on déduit du I.1. que v admet un point fixe dans [m,M].
Ainsi u et v ont un point fixe commun.

Partie IV – Ensembles équicontinus et théorème de Cano

1. a. Pour n ∈N et x ∈ [0,1], on a |pn(x)−pn(0)| = xn ⩽ x si n ̸= 0 et |p0(x)−p0(0)| = 0. Pour ε> 0 et δ := ε,
on a donc

∀n ∈N , ∀x ∈ [0,1] , |x| ⩽ δ =⇒ ∣∣pn(x)−pn(0)
∣∣ ⩽ ε

Ainsi M est équicontinu en 0.

b. Raisonnons par l’absurde en supposant que M est équicontinu en 1. Il existe alors δ> 0 tel que

∀n ∈N , ∀x ∈ [0,1] , |x −1| ⩽ δ =⇒ ∣∣xn −1
∣∣ ⩽ 1

2

En particulier, |(1−δ)n −1| ⩽ 1
2 pour tout n ∈N. Ceci est absurde car (1−δ)n −1 −−−−−→

n→+∞ −1.

c. Soit n ∈N∗, a ∈ ]0,1[ et ρ> 0 tel que [a −ρ, a +ρ] ⊂]0,1[.
Pour x ∈ [a −ρ, a +ρ], on a xn −an = (x −a)

∑n−1
k=0 xk an−k−1 d’où∣∣xn −an

∣∣ ⩽ |x −a|n(a +ρ)n−1

Comme n(a +ρ)n−1 −−−−−→
n→+∞ 0 par croissances comparées, il existe une constante K telle que n(a +

ρ)n−1 ⩽K pour tout n ∈N∗. Soit ε> 0. Posons δ := min
(
δ, εK

)
. Par ce qui précède, on a

∀n ∈N , ∀x ∈ [a −δ, a +δ] ,
∣∣xn −an

∣∣ ⩽ ε

Ainsi M est-il équicontinu en a.
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Remarque

Pour n = 0, on a |xn −an | = 0 c’est pour cela que nous sommes placés directement sous l’hypo-
thèse n ∈N∗.

2. C’est clair car pour tout n ∈N et (x, a) ∈ [0,1]2, on a∣∣un(x)−un(a)
∣∣ ⩽ |x −a|

3. Comme F n’est pas un intervalle, il existe (α,β) ∈ F2 tel que α< β et ∃γ ∈]α,β[ vérifiant γ ̸∈ F. Supposons
u(γ) > γ. Notons

a := sup
{

x ∈ F; x < γ}
et b := inf

{
x ∈ F; x > γ}

Ces bornes existent car les deux ensembles sont non vides (ils contiennent respectivement α et β) et

sont bornés. Montrons que a est un maximum. Soit (an)n∈N une suite de
{

x ∈ F; x < γ}N convergeant
vers a. On a a ⩽ γ par passage à la limite dans l’inégalité ∀n ∈N, an < γ. Comme u(an) = an pour tout
n ∈N, on obtient par passage à la limite que u(a) = a donc a < γ. On prouve de même que b est un
maximum. Comme F∩ ]a,b[= ∅, la fonction x 7→ u(x)− x est continue et s’annule pas sur l’intervalle
]a,b[, on déduit du théorème des valeurs intermédiaires que δ garde un signe constant sur ]a,b[. Ainsi
∀x ∈ ]a,b[, u(x) > x ou ∀x ∈ ]a,b[, u(x) < x.

4. a. Il suffit d’appliquer la définition de l’équicontinuité en a avec ε := b−a
2 ·

b. Raisonnons par l’absurde en supposant que ∀x ∈ ]a,b[, u(x) ⩽ b. L’intervalle ]a,b] est alors stable
par u donc un(a′) ∈ ]a,b] pour tout n ∈ N. Ainsi, pour tout n ∈ N, un(a′) < un+1(a′) = u

(
un(a′)

)
.

Ainsi (un(a′))n∈N est croissante majorée par b, elle converge donc vers un réel ℓ ∈ ]a,b]. Comme u
est continue, ℓ est un point fixe de u. Or, sur ]a,b], le seul point fixe de u est b. Ainsi ℓ= b. Ceci est
absurde, car par passage à la limite n →+∞ dans l’inégalité de la question précédente, on obtient
|b −a|⩽ b−a

2 ·
c. Il existe c dans ]a,b[ tel que u(c) > b. Comme u(c) > b > u(a) car u(a) = a, on déduit du théorème

des valeurs intermédiaires l’existence de x0 ∈ ]a,c[ tel que u(x0) = b.

d. Comme (yn)n∈N est décroissante minorée par a, elle converge vers une limite ℓ ∈ [a,b[. Par conti-
nuité de u en ℓ, on déduit de la relation de récurrence par passage à la limite n →+∞ que ℓ= u(ℓ).
Comme l’unique point fixe de u sur [a,b[ est a, on a ℓ= a.

e. On trouve que un+1(yn) = b pour tout n ∈N, par une récurrence facile.

f. Appliquons la définition de l’équicontinuité de (un)n∈N avec ε := b−a
2 · Il existe δ> 0 tel que

∀p ∈N , ∀x ∈ [0,1] , |x −a| ⩽ δ =⇒ ∣∣up (x)−a
∣∣ ⩽ b −a

2

Soit alors n0 ∈N tel que |yn0 −a|⩽ δ. On a

|b −a| = ∣∣un0+1(yn0 )−a
∣∣ ⩽ b −a

2

Ce qui est absurde.

5. On a démontré que, sous les hypothèses de ce sujet (cf. le début de l’énoncé), l’équicontinuité de{
un ; n ∈ N}

est une condition suffisante pour que les graphes de u et v aient une intersection non
vide.
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