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I. Etudes de continuité

o® Prolongements par continuité f

1—-cos(2nx)
xIlnx

1. Justifier la continuité de f sur R} \ {1}.

On pose f(x) := pour x € R} \ {1}.

2. Déterminer un équivalent de f en 0. En déduire que f est prolongeable par continuité en 0.
3. Lafonction f est-elle prolongeable par continuité en 1 ?

4. Etablir que f est bornée sur R*.

INDICATION : Majorer directement f(x) pour tout x > 2 et utiliser les 1. et 2. pour x < 2.

o® Une expression avec partie entiére f

Etudier la continuité sur R de la fonction f définie par f(x) = (—1)/ (x—Lx] - %)

Q® Académique ff

Etudier la continuité sur R de la fonction f définie par xe Q — f(x) =1-x, x¢ Q— f(x) = x.

a Q® Une fonction implicite ff

1. Montrer qu'’il existe une unique fonction ¢ : R, — R, telle que V€ R, ¢(£) + tp(r) = 1.

- . o e 1-o1)°
2. Etablir que ¢ est continue. On pourra écrire I'équation sous la forme ¢ = W
B Q® Une fonction définie implicitement ff

Soit ne IN*.
1. Démontrer |'existence et I'unicité de f: R — R telleque Vxe R, f(x)?""!1+ f(x)-x=0.
2. Justifier que f est continue.

3. Déterminer un équivalent de f(x) quand x tend vers +oo.

a Q® Fonctions monotones ff

. . () o P .
Soit f :]0, +oo[— R croissante telle que x — f— soit décroissante. Etablir que f est continue.
X
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II. Image continue d’un intervalle

0® Fonctions continues de R dans Z.

Que dire d’'une fonction continue f: R — 7 ?

a Q® Un minimum f

Montrer que f: x — [sin(x)| + [sin(x + 1)| admet un minimum strictement positif sur R.

a Q® Moyenne arithmétique f

1 n
Soit f € €°([0,1],R), n € N* et (x1,..., x,,) € [0,1]". Montrer qu'il existe x € R tel que f(x) = - Y f (xp).
k=1

10 [eXO) FEtude d’'une composée f

Soit f:[0,1] —]0,1] continue et g: Ry — R strictement croissante telle que g(0) = 0.
Justifier 'existence de p € R telque go f > .

11 [*XO) Bornitude f

Soit f: R — R continue et A une partie bornée de R. Montrer que f(A) est bornée.

12 [eXO Fonctions continues de limite finie en +oo ff

Soit f: [0, +oo[— R une fonction continue.

1. On suppose que f(x) +00. Montrer que f est minorée et y atteint sa borne inférieure.

X—+00

2. On suppose que f(x) ¢ € R. Montrer que f est bornée.

X—+00

13 QKO Fonctions continues qui commutent, X-PC 1994 ff

Soit (f,g) € €°([0,1],[0,1])? tel que fog = go f.Onnote f" et g" leurs n-iémes itérées.
1. On suppose que f > g.
a. Montrer qu'il existe K > 0 tel que Vx € [0,1], f(x) > K+ g(x).

b. Etablirque Vne N, Vxe[0,1], f™(x) > nK+ g"(x).
2. Montrer qu'il existe c € [0, 1] tel que f(c) = g(c).
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14 KO Existence d’un plus petit zéro ff

Soit f: R+ — R continue vérifiant f(0) >0et f(1) <O.
1. Justifier I'existence d’un plus petit zéro de f.

2. Donner un exemple de fonction f :]0,1] — R continue telle que f s’annule mais n’admet pas un plus
petit zéro.

15 KX Il pleut des cordes fff

Soit f une fonction de [0, 1] dans R. On dit que ¢ > 0 est une cordede f sidt € [0,1—c] tel que f(t+c) = f(1).
Si ¢ est une corde de la fonction f et si t est le point donné par la définition, alors le segment horizontal
joignant les points (¢, f(t)) et (¢ + ¢, f(t + ¢)) a ses deux extrémités sur le graphe et sa longueur est c.

1. SoitneN* et f € €¢°([0,1], R) tel que f(0) = f(1). Etablir que % est une corde de f.

2. Soit ¢ un réel strictement positif qui n’est pas 'inverse d'un entier naturel non nul. On considere la
fonction f définie sur [0, 1] par
sin’ (1)

)=t
0=t

a. Montrer que la fonction f est continue, et qu’elle vérifie f(0) = f(1).
b. Justifier que I'équation f (¢ + ¢) = f(#) n’a aucune solution dans [0,1 —c].

c. Onditqu’'unréel ¢ > 0 est une corde universelle si ¢ est une corde pour toute fonction f € ([0, 1], R)
vérifiant f(0) = f(1). Déterminer toutes les cordes universelles.

III. Continuité, injectivité, surjectivité et bijectivité

16 EeR Injectivité et continuité ff

Les deux questions qui suivent sont indépendantes.

1. Soit f: R — R continue telle que V(x, y) € R?,
Etablir que f réalise une bijection de R sur R.

fE=fo| = 1x-yl.

2. Existe-t-il une fonction f: R — R continue telle que Vxe R, (fo f)(x)=—-x?

17 KO Etude d’une borne inférieure  paramétre ff

Soit f : R — R continue, positive et majorée. Soit a € R. Onnote f,: x— f(x+a) etF, := {x e R; fa(x) = x}.

1. Démontrer que F, #o etF, c R,.

2. Justifier 'existence de x, := inf F, et démontrer que x, € F,,.
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On suppose dans toute la suite de I'exercice que f est strictement décroissante.

3. Etablir que 6 : x — x — f(x) réalise une bijection de R sur un intervalle que 'on déterminera.
4. Exprimer x, en fonction de a et 57 (a).

5. Lapplication a — x, est-elle continue ?

18 [XS) X-PC 2014 fff

Soit f et g dans €°(R, R) telles que f o g = idr. Montrer que f et g sont bijectives.

IV. Points fixes

19 §KS Variations sur les points fixes f

Soit f: R — R continue et décroissante sur IR. Montrer que f admet un unique point fixe.

m Q® Points fixes et limites en +oo f

Soitfe R et f: R — R continue tels que f — .
X X—+o00

1. On suppose que ¢ # 1. Montrer que f admet un point fixe.

2. La conclusion précédente tient-elle toujours si€ =12

21 KO Mines PSI-2016 ff

Soit (f, g) € €°(R,R) avec f o g décroissante. Montrer que f o g et go f admettent un unique point fixe.

22 [XS} Points fixes ff

Soit f:[0,1] — R une fonction 1-lipschitzienne, ie telle que V(x, y) € [0, 113, |f(x) -fy | <lx=yl.
Montrer que 'ensemble des points fixes de f est soit vide, soit un segment.

V. Equations fonctionnelles

23 XS Un grand classique f

Déterminer les fonctions f: R — R continues en 0 telles que Vx e R, f(2x) = f(x).
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24 ReEO Equation fo f=f ff

Déterminer les fonctions f : [0,1] — [0, 1] continues telles que fo f = f.

25 NXO Une équation fonctionnelle classique ff

Soit f: R — R continue telle que f(x)
1. Quevaut fsurl:= f(R) ?

2. En déduire I'expression de f sur R.

—coetVxeR, (fof)x) = f(x)+]1.

X——00

26 QXO Une équation fonctionnelle, X-PC 2001 fff

Trouver les fonctions f continues de R dans R telles que ¥ (x,y) € R?, f(x*+ f()) =y + f(0)%

VI. Probléemes

27 NS Autour d’une équation fonctionnelle f

Pour toute fonction f: R — R, on dira que f est solution de E si

V() R, f(x+)+ f(x—p) =2f(x) +2f ()

Partie I — Solutions continues de E

Dans cette partie, on établit quelques propriétés des solutions de E puis on propose deux méthodes de
résolution de E sous I'’hypothese de continuité de f.

1. Soit f : R — R une solution quelconque de E.
a. Calculer f(0) puis démontrer que f est paire.
b. Montrer que pour tous x€ Retne N, f(nx) = n?f(x).
c. Montrer que pour tous xe Retr € Q, f(rx) = r’f(x).

d. Montrer quesi f est bornée sur un intervalle de la forme | —a, a[ ou a > 0, elle 'est sur tout intervalle
]|-A,A[, ot A€ RZ. INDICATION : Utiliserle I.1.b.

2. Déterminer toutes les solutions de E continues sur RR.
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Partie II — Solutions bornées au voisinage de 0 de E

1. Soit ¢ : R — R une fonction, p et g dans |1, +oo[. On suppose que ¢ est bornée au voisinage de 0 et que
VxeR, ¢(px) = qd(x)
a. Pour tous x € R et n € IN, exprimer ¢ (p"x) en fonction de ¢(x), g et n.
b. En déduire que ¢ est continue en 0 en revenant a la définition de la limite.
2. Soit f : R — R une solution de E bornée au voisinage de 0. Soit a un nombre réel fixé.
On note g la fonction x — f(a+ x) — f(a) — f(x), définie sur R.
a. Montrer que f est continue en 0.
b. Montrer que g(2x) = 2g(x) pour tout x € R.
c. Montrer que g est bornée au voisinage de 0.

d. En déduire que f est continue en a. Conclusion ?

28 KXo Histoires de points fixes ff
Dans ce probleme, on considere u et v deux fonctions de [0, 1] dans [0, 1] continues telles que uov = vo u.
Partie I — Intersection des graphes dans le cas général
L objectif de cette partie est de montrer que les graphes de u et v sont d’intersection non vide, c’est-a-dire :
dce[0,1], ulc) = v(c)

1. Soit (a, b) € R? tel que a< bet f:[a,b] — R continue telle que que f([a, b]) c [a, b].
Démontrer que f admet un point fixe.
2. Dans cette question, on s'intéresse a 'ensemble F := {x €[0,1]; u(x) = x} des points fixes de u.
a. Justifier 'existence de m := inf F et M := sup F puis établir que (m,M) € F2.
b. Etablir que F est stable par v, c’est-a-dire v(F) c F.
c. En déduire que u(m) < v(m) et v(M) < u(M) puis conclure.
3. Nous proposons a présent une autre démonstration. On raisonne par I’absurde en supposant que
Viel[0,1], u(t) # v(r)
a. Justifier que, quitte a permuter u et v, on peut supposer que V¢ € [0,1], u(t) > v(f).
b. Justifier 'existence de A >0 tel que V¢ € [0,1], u(t) > A+ v(1).
c. Démontrer que, pour tout n€ N et £ € [0,1], u"(t) > v"(t) + nA.

d. Conclure.
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Partie II — Ftude du cas ou1 'une des deux fonctions est monotone

L objectif est d’établir I'existence d'un point fixe commun a u et v lorsque 'une de ces fonctions est mo-
notone. Quitte a permuter u et v, nous supposerons qu’il s’agit de u.

1. Dans cette question, on suppose u décroissante.

a. Montrer que u posséde un unique point fixe.
b. En déduire qu'il s’agit également d'un point fixe de v.

2. Dans cette question, on suppose u croissante.

a. Justifier 'existence d’une suite (a,) ,cv a valeurs dans [0, 1] telle que :
VneNN, via,)=a, et ula,)=ans

b. Montrer que la suite (a,) ,eIv est monotone, puis convergente.

c. Conclure.

Partie I1I - Etude du cas oi1 'une des deux fonctions est 1-lipschitzienne

Lobjectif est d’établir I'existence d’'un point fixe commun a u et v lorsque I'une de ces fonctions est 1-
lipschitzienne. Quitte a permuter u et v, nous supposerons qu’il s’agit de u :

V(x, ) €[0,11%, |ux) - u@)| < lx-yl
1. On reprend les notations de la question I.1. Démontrer que F = [m, M].

INDICATION : On pourra remarquer que |u(x) —u(m)| < x—met |uM) — u(x)| < M—x pour x € [m,M].

2. Conclure. INDICATION : On pourra utiliser la partie I.

Partie IV — Ensembles équicontinus et théoréme de Cano (de fa fff)

Un ensemble .%# de fonctions continues de [0, 1] dans [0, 1] est dit équicontinu en a € [0, 1] si
Ve>0,38>0,VfeF, Vxe[0,1], |x—al <& = |f0)-f(@)|<e

Le méme ensemble est dit équicontinu s’il est équicontinu en a, pour tout a € [0, 1].
1. Onnote ./ := {p,; n€ N} ou, pour tout n€ N, p, :[0,1] — [0,1], x — x".
a. Montrer que .# est équicontinu en 0.
b. Montrer que .# n’est pas équicontinu en 1.
c. Soit a€]0,1[. Lensemble de fonctions .# est-il équicontinu en a ?

2. Soit u:[0,1] — [0,1] une fonction 1-lipschitzienne. Démontrer que { u”; n € N} est équicontinu.

On suppose dans toute la suite que 'ensemble {u”; n€ IN} des itérées de u est équicontinu, et on
cherche a montrer que 'ensemble F (défini au I.2.) est un intervalle. On raisonne par I’absurde en sup-
posant que F n’est pas un intervalle.
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3. Montrer qu'il existe (a, b) € F? tels que a< b et Vx €]a, b[, u(x) > xouVx€la,bl, u(x) < x.
4. On suppose dans cette question que Vx €]a, b[, u(x) > x.
b—a

2

a. Montrer l'existence de a’ €]a, b[ tel que Yne N, |u"(a")—a| <

b. Démontrer I'existence de ¢ dans ] a, b tel que u(c) > b.

INDICATION : Raisonner par I’absurde. Montrer que u"(a’) b. On remarquera que cette suite

n—+oo
vérifie la relation de récurrence y, .+ = u(y,) afin d’étudier sa monotonie puis conclure.
c. En déduire I'existence de xy dans ] a, b[ tel que u(xg) = b.
d. En réitérant ce procédé, on construit facilement une suite strictement décroissante (x;),eNv d’élé-
ments de ]a, b[ tels que u(xy) =betVne N* , u(x,) = x,-1. Justifier que x, —— a.

n—+oo
e. Déterminer u""*!(x,,) pour tout n € IN.
f. En déduire une absurdité. INDICATION : Chercher du coté de I'équicontinuité de {u"; n€ N} en a.

5. En déduire une généralisation du théoreme démontré dans la partie IV.
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VII. Indications

(1 )

Passer par des équivalents.

8-

Afin d’étudier la continuité en xy € R, distinguer les cas xy € Z et x( ¢ Z. La fonction est continue en tout
point.

8-

La fonction est continue en %, discontinue en tout autre point de IR. On pourra utiliser le critére séquentiel
ainsi que la densité de () et R\ QQ dans R.

(4 S

Il s’agit d’'une fonction définie implicitement. Aidez-vous d’une bijection.

8 -

On pourra s'aider de g : R — R définie par g(y) := y*"*! +y.

0 -

Passer par les limites a gauche et a droite.

7 )

On conjecture que f est constante.

B -

La fonction est périodique.

B -

Quitte a permuter les x;, ce qui ne change pas la moyenne des f(x;), vous pouvez supposer que 'on a
Fx) < flx) <. < flan).

o -

Appliquer le théoréme de Weierstrass a g.

o -

Appliquer le théoréme de Weierstrass.
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o -

Se ramener au théoreme de Weierstrass.

o -

Au 1., considérer K := min(f — g) puis raisonner par récurrence sur 7. Raisonner par ’absurde au 2.

o -

Au 1., considérer une suite minimisante de {x € [0,1]; f(x) =0}.

o -

Utiliser ¢ — f (t+ 1) — f(2).

o -

Remarquer que, dans les deux cas, f est injective.

o -

Utiliser une suite minimisante pour établir que la borne inférieure de F, est un minimum.

o -

Remarquer que g injective donc strictement monotone puis en déduire le comportement de g en +oo.

(19 I

Utiliser la fonction g: x — f(x) — x.

o -

Pour tout réel x non nul, poser g(x) =

o -

S’intéresser a 6 : x — (f o g)(x) — x. Construire un point fixe de go f a partir d'un point fixe de fog.

B -

En supposant '’ensemble K des points fixes de f non vide, montrer qu’il est convexe : ie si f(x) = x et
f(y) =y, alors pour tout z € [x, yl, f(z) = z. Exploiter la continuité de f pour montrer que K est fermé.

8-

Que dire de la suite ( f (zin)) ?

n=0

f@-x _ f@
x X :
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i I

Reconnaitre f sur f ([0, 1]).

(25 I

Remarquer que I est un intervalle : lequel exactement ?

o -

Montrer qu'une solution f est nécessairement bijective, impaire et strictement croissante. Déduire de la
relation fo f =id que f =id.

e -

AuIl.2.c., choisir A de facon a vérifier 'implication : -1<x<1 = —-A<x+a<A.

oo I

Aul.2.a., on pourra utiliser le critere séquentiel sur les bornes.
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VIII. Solutions

(1 i}

1. La fonction f est continue sur R} \ {1} par opérations sur les fonctions continues (quotient de deux
fonctions continues, le dénominateur étant un produit de fonctions continues).

X

1 x(2mx)? 2 P o
2B 2wk Comme — 0 (opérations sur les limites), on a f(x) — 0 et f est
X— X—

2. On a f(x) T T xInx ~ Inx
prolongeable par continuité en 0 en posant f(0) := 0.

Inx

_ Ly @nu? . .
3.Ona f(l1+u) = &J;’fﬁfﬂ) ~ 2 X(umt) =2n?u dotr f(1+u) — 0. Ainsi f est prolongeable par conti-
nuité en 1 en posant f(1) :=0.
4. Notons f le prolongement continude f a R..
= Pourx >2,0onaxlnx>2In2et

fo] =|

1 —-cos(2nx)

3 |1 —cos(2mx)| < 1+ |cos(2mx)| 2 1
- xlnx = 2In2 ~2In2  In2

xlnx

= Comme f est continue, f est bornée sur le segment [0, 2].
Ainsi f estbornée sur R ;.

8-

= Lafonction x — (—1)*! est constante au voisinage de tout point non entier donc continue en ces points.
La fonction x — x — [x] — 1/2 est également continue en tout point non entier. Ainsi f est continue en
tout point non entier (opérations sur les fonctions continues).

= Soit neZ.

o Pourxe[n-1,n[, |x] =n-1donc xllrgff(x) = (-1 (n— (n—-1)— %) = (_1)”—1%.

1 1
© Pour x€[n,n+1][, |x] =ndonc lim f(x)=(-1)" (n— n-— —) = (- 1=,
x—n* 2 2
1
Ainsi limxlir%lf fx)=lim f(x)=f(n)= (—1)”_15 : f est continue en n.
— x_,n-#

Finalement f est continue sur R.

8-

= Pour toutréel x€ R, ona |f(x) — 3| < |x—3|. Ainsi f(x) — 3 = f(3) par le théoréme d’encadrement :

1
X=3

[ est continue en 3-

= Soit xo € R\{3}. Par densité de Q et R\Q dans R, il existe (rn) new € QN et (in) neny € R\Q)™ convergeant

vers xg. Pour tout ne N, f(r,) =1-ry et f(i,) = i,. Ainsi f (i) —— X0 et f(rp) — 1—x¢# xp. La

fonction f n’est donc pas continue au point xp.

LLG € HX6 13



2025-2026 Laurent Kaczmarek

g -

1. Fixons t € R, et considérons f : Ry — R définie par f(x) = x>+ tx — 1. La fonction f est strictement
croissante (somme de deux fonctions strictement croissantes) et continue (opérations sur les fonctions
continues) donc par le corollaire du TVI, f réalise une bijection de R sur [-1, +oo[ : I'équation f(x) =0
admet donc une seule solution sur R,.. D’ot1!'existence et 'unicité de la fonction ¢.

1

2. Soit g la fonction définie sur ]0,1] par g(x) = x~! — x2. Sur ]0,1], g est continue (opérations sur les
fonctions continues) et strictement décroissante (somme de deux fonctions strictement décroissante).
Comme g(x) 400 et g(1) = 0, on déduit du corollaire du TVI que g réalise une bijection de ]0, 1]

x—0+
sur R,. Léquation définissant ¢ s’écrivant god =idg,, ona ¢ = g~ ! et ¢ est donc continue.

8 -

1. Soit g : R — R définie par g(y) := y*"*! + y. Cette fonction est continue en tant que fonction polyno-
miale et strictement croissante sur R en tant que somme de fonctions strictement croissantes sur cet

intervalle. Comme g(y) - +ooet g(y) . —o00, on déduit du corollaire du théoréme des valeurs
—+00 ——00

intermédiaires que g réalise une bijection strictement croissante de R sur lui-méme. Ainsi, pour tout
réel x, il existe un unique y € R tel que g(y) = x, ce réel est g~1(x). Il existe donc une unique fonction
f:R—RtellequeVxeR, f(x)>""'+f(x)—x=0etf=g".

2. Comme f = g"! est g est continue de R dans R, f est continue sur R.

3. Onsait que f(x) = g7 (x) +oo car g(x) +o0. Ainsi f(x) = o (f(x)*"*!) en +oo d’ott

X—+00 X—+00
x=f(x)+ f0)" T~ oo fx)2H

. 1
puis f(x) ~ x2»+1 quand x tend vers +oo.

O -

Soit xp € Rj_

= Pour tout x > xp, on a f(xp) < f(x) < xiof(xo) par croissance de f et décroissance de x — @ Par le

théoreme d’encadrement, on en déduit que f(x) — f(x0).

x—»xo

= Pour tout x < xp, on a f(xp) = f(x) > xiof(xo) par croissance de f et décroissance de x — % Par le
théoreme d’encadrement, on en déduit que f(x) —— f(xo).
x—»xo

La fonction f est donc continue en x.

8-

Lensemble f(RR) est un intervalle de R (par le théoréme des valeurs intermédiaires) et non vide. Comme
les seuls intervalles réels non vides inclus dans Z sont les singletons, f est constante.
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B -

La fonction f étant n-périodique et continue, f(R) = f([0,7]) est un segment (théoreme de Weierstrass) : f
admet un minimum sur R. Soit x € [0, 1] un réel ou f atteint son minimum. Supposons sin xy = 0. Il existe
alors n € Z. tel que xo = nn et donc sin(1 + nn) = (—1)"sin1 # 0. On en déduit que f(xg) > 0.

B -

Posons m = %Zzzl f(xx). Quitte a permuter les x;, ce qui ne change pas la valeur de m, on peut supposer
flx) < f(x) <...< f(xy). Onaalors f(x;) < m< f(x,). D’apres le théoreme des valeurs intermédiaires,
il existe x € [x1, x,] < [0,1] tel que f(x) = m.

(10

= Comme f est continue sur le segment [0, 1], on déduit du théoreme de Weierstrass qu'il existe a € [0, 1]
tel que f > f(a).

= Par croissance de g, on en déduit que go f > (go f)(a).

= Comme f est a valeurs dans ]0,1], f(a) > 0 et par stricte croissance de g, ona (go f)(a) > g(0) =0

o -

Comme A est bornée, il existe deux réels m < M tels que A < [m,M] d’ou f(A) c f([m,M]). Puisque f est
continue, f < [m, M]) est bornée (par le théoréme de Weierstrass) donc f(A) I'est aussi.

o -

1. llexisteM >0telque Vx > M, f(x) > f(0).Ainsi f est minorée sur [M, +ool. Par le théoreme de Weiers-
trass, f est minorée sur le segment [0, M] et y atteint sa borne inférieure. Ainsi f est minorée sur [0, +oo[
et puisque f(0) > minyea v f(x), le minimum de f sur [0, M] est aussi le minimum de f sur [0, +ool.

2. llexiste M >0telque Vx>M, €+1 > f(x) > €—1.Ainsi f est bornée sur [M, +ool. Par le théoréme de
Weierstrass, f est bornée sur le segment [0, M]. Ainsi f est bornée sur [0, +o0ol.

(13

1. a. Par le théoreme de Weierstrass, 0 := f — g étant continue sur le segment [0, 1], il existe c € [0, 1] tel
que 6 > &(c) = mind. Le réel K:= 8(c) convient donc.

b. Prouvons la propriété par récurrence sur n € IN.
= Linitialisation en n = 0 est évidente.

= Soit n € IN. Supposons que Vx € [0,1], f"(x) > nK+ g"(x). Soit x € [0,1]. Comme f(x) et g"(x)
appartiennenta [0,1],on a

F'0 = nK+ " (F(0) = nK+ f (8" () > nK+K+g(g"() = (n+ DK+g"" (1)

car f et g commutent. La propriété est donc vraie au rang n + 1.
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2. Raisonnons par I’absurde. Supposons que Vx € [0,1], f(x) # g(x).La fonction & := f — g étant continue
et ne s'annulant pas sur l'intervalle, elle y garde un signe constant par le théoréme des valeurs inter-
médiaires. quitte a permuter f et g, on est ramené au cas du 1. dont on reprend les notations. On a
f™(0) > nK pour tout n € IN d’ot1 f(0) +00. Ceci est absurde car Vrn e IN, f"*(0) € [0, 1].

o -

1. On déduit du théoreme des valeurs intermédiaires que Z := {x €[0,1]; f(x) = 0} est non vide. Puisque
Z est minoré par 0, il admet une borne inférieure m. Il existe donc (x,) ;e € 7N telle que x, m.

n—+oo

n—+oo
Ona f(x,) — f(m) par continuité de f en m. Puisque f(x,) = 0 pour tout n € IN, on en déduit par
— 100

passage a la limite que f(m) = 0. D’ou 'existence d'un plus petit zéro de f.
2. Il suffit de considérer f: x — 0.

o -

1. Pour ¢ € [0,1— 1], posons g(t) := f (t++) — f(#). Comme Zz_lg(g) =0, il existe (p, q) € [0, n —1]? tels

que g (%) <0<g (%) On déduit du théoréeme des valeurs intermédiaires 'existence de € [0,1 — 1/n]
tel que g(¢) =0.

2. a. Lafonction est continue sur [0, 1] en tant que somme de deux fonctions continues sur ce segment.
De plus, on a clairement f(0) = f(1) =0.

b. Pour tout tdans [0,1],0ona f(t+c¢) = f(f)+c.Léquation f(f+c) = f(¢) n'admet donc aucune solution
sur [0, 1].

c. On déduit des questions précédentes que les seules cordes universelles sont les inverses des entiers
naturels non nuls.

o -

1. On déduit de I'inégalité vérifiée par f que cette fonction est injective sur R. Puisqu’elle est continue sur
I'intervalle R, on déduit du cours que f est strictement monotone.

+o00. Pour

2. = Supposons f strictement croissante. Pour x € R4, ona f(x) > f(0) + x d’ou f(x)
xeR_,ona—-f(x) > —-f(0)—-xdou f(x) ——— —oo.

X—+00

= Supposons f strictement décroissante. La fonction — f est strictement croissante et vérifie les mémes
hypothéses que f, donc par le point précédent f(x) +oo et f(x) —00.

X——00 X—+00
Dans les cas, on déduit du corollaire du théoréme des valeurs intermédiaires que f réalise une bijection
de R sur R.

3. Raisonnons par I'absurde : soit f: R — R continue telle que f? = —idR.

= Soit (x,y) € R? tel que f(y) = f(x). On a alors fz(y) = f2 (x) par application de f, d’'ot1 y = x. On en
déduit que f est injective et, puisqu’elle est continue sur l'intervalle R, f est strictement monotone.

= Comme f est strictement monotone, [ est strictement croissante ce qui est absurde car f2 est stric-
tement décroissante.
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o -

1. Notons u, : x — x— f(x + a). Cette fonction est continue sur R (somme de deux fonctions continues).

Comme f est positive, on a u,(x) —o0o0. Comme f est majorée, on a u,(x) +00. On déduit
X——00 X—+00

du théoréme des valeurs intermédiaires, 'existence de y € R tel que u,(y) =0, ie f(y + a) = y. Ainsi
F, # . Comme f est positive, on a u,(x) <0 pour tout x € R*. Ainsi F, = {y eR; uqs(y) = 0} cR,.

2. L'ensemble F, est une partie de R non vide et minorée par 0 (cf. la question précédente). On en déduit
I'existence de x, := inf F,. Soit (y,) nelN € F]}f telle que y, Xq. On a f(x, + a) = x, (x) pour tout

n—+oo

n e IN. Comme f est continue en a+ x,, ona f(x, + a) f(la+ x;) et on déduit de (x) par passage

n—+oo
alalimite que f(x,+ a) = x4, dou x, € Fy.

3. La fonction 0 := ug est strictement croissante en tant que somme de deux fonctions strictement crois-
santes, continue, de limite +oo (resp. —oco) en +oo (resp. —oo) d’apres I’étude fait précédemment de uy.
On déduit du corollaire du théoréme des valeurs intermédiaires que d réalise une bijection de R sur un
intervalle que I'on déterminera.

4. Ona f(xg+a)+a=x,+adoudx,+a)=adotx,+a=5"(a) dott x, =8 '(a)-a.

5. Comme 0 est continue sur R, sa bijection réciproque est continue sur 6(R) = R ainsi a — x, est conti-
nue en tant que somme de deux fonctions continues.

o -

= Comme f o g est injective (resp. surjective), g est injective (resp. f est surjective).

= Comme g est injective et continue sur R, g est strictement monotone. On déduit du théoreme de la
limite monotone que g admet des limites £_ et £, dans R en —oo et +oo.

= Raisonnons par I'absurde en supposant que £, € R. On a g(x) —
—T00

0, et f(y) 0 f ;) par conti-
Y=kt

nuité de f en ¢4, d’ou (f o g)(x) = f;) € R par composition des limites. Ceci est absurde car

fog=idr. De méme, on démontre que ¢_ ¢ R. Ainsi (¢_,£) = (—o0o,+00) ou ({_,{,) = (+00, —00).

= La fonction g réalise dans une bijection de R sur R par le corollaire du théoréme des valeurs intermé-
diaires. Onadonc f = (fog)og™! = g~! est bijective.

o -

Posons Vx € R, g(x) = f(x) — x. La fonction f étant décroissante sur R, elle admet en +oo une limite
Iy € Ru{—o0}. Ainsi xliIP g(x) = —oo. On montre de méme que xlim g(x) = +o0. Le théoreme des valeurs
—+00 ——00

intermédiaires permet alors de conclure que g(RR) = R. En particulier 0 admet un antécédent x, par g, d’'ot
f(x0) = xo. L'unicité vient de la stricte décroissance de g.

o I

1. Posons&:]R—»R,x-—»f(x)—x.Ona6(’“) —-1.

X x—+o00
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= Casl:¢>1.Ilexiste A>0etB<0tel que Vx > A, % >0etVx <B, @ > 0. En particulier
0(A)d(B) < 0. Puisque & est continue (somme de fonctions continues), on déduit du théoreme des
valeurs intermédiaires que d s’annule en un point de R, d’ot1 'existence d'un point fixe de f.

= Cas 2 : £ < 1. On adapte sans peine la preuve donnée dans le premier cas (il suffit d’échanger
quelques signes).

2. La conclusion n’est plus valable en général comme le prouve le contre-exemple suivant : f: R — RR,
x—x+1

o -

= Par le théoreme de la limite monotone, f o g admet une limite valant —oo ou un réel (resp. +oco ou un
réel) en +oo (resp. —oo).

= Lafonctiond: R — R, x— (fog)(x)—x est strictement décroissante (somme d'une fonction décroissante

et d'une fonction strictement décroissante), 6(x) - +00 et 8(x) o ™ d’apres le point précé-
——00 —+00

dent. Comme § est continue (somme de fonctions continues), on déduit du corollaire du théoréme des
valeurs intermédiaires que & réalise une bijection de R sur lui-méme. La fonction 6 s’Tannule donc une
seule fois sur R : f o g admet un unique point fixe.

= Notons a 'unique point fixe de f o g. On a alors g(a) est un point fixe de go f. Soit f € R un point fixe de
gof.Ona(gof)(P) =P dou f(P) est un point fixe de f o g. Ainsi f(p) = a d’ou g(a) =, ce qui prouve
'unicité du point fixe de go f.

B -

Notons K I'ensemble des points fixes de f. Supposons K # &.

= Soit (x, y) € K? tel que x < y. Soit z €]x, y[. Raisonnons par I'absurde. Supposons f(z) # z.
f&)-fx)

Z—X

fWN-f@) | z-x
V-z z—X

o Supposons f(z) > z. On a alors > % > 1.
T Supposons f(z) < z. On a alors
Ceci est absurde car f est 1-lipschitzienne. L'ensemble K est donc convexe, c’est un intervalle de R.

= Comme K c [0,1] et K # @, K admet des bornes inférieure et supérieure. Soit p = infK et (k) el € KN
telle que k, — ok Comme Vn e NN, f(k,) = k,, on obtient pas passage a la limite f(p) = p par conti-
—1+00

nuité de f en p. Ainsi p € K. On prouve par un raisonnement analogue que supK € K.

Lensemble K est donc un segment.

e -

= ANALYSE. Soit f une solution. Par une récurrence facile, on prouve que Vn € IN, f(357) = f(x) (x). Par
continuité de f en 0, ona f(55) f(0). Par passage a la limite dans (%), on obtient donc f(x) = f(0).

n—+oo
La fonction f est donc constante.

= SYNHTESE. Toute fonction constante vérifie clairement I’équation initiale.
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i I

On effectue une Analyse-Synthese.

=> ANALYSE. Soit f une solution. On note S = f([0, 1]).

o Lensemble S est un segment de R en tant qu'image du segment [0, 1] par I'application continue f.
Comme f est a valeurs dans [0,1], on a S < [0,1]. On le notera S = [a, b], avec a = mins«g 1 f(?) et
b = maxe(o,1) f(1).

o Enparticulier larestrictionde f a [0, a] (resp. [b, 1]) estun élément de €9(10, al, [a, b)) (resp. €9(Ib,11,[a, b))).

= SYNTHESE. Soit (a, b) € [0,1]? tel que a < b, (g,d) € €°([0, al, [a, b]) x €°([b, 1], [a, b)) tel que g(a) = a et
d(b) = b. Soit f:[0,1] — R définie par :

o Ytelabl, (1) =t o Vtel0,al, f(1) = g(b). o Yteb1l, f(t) =d().

On vérifie facilement que f est continue sur [0,1] (le raccord se fait bien par continuité en a et b). De
plus, pour 7€ [0,1], f(1) € [a,b] Aol f (f(#)) = f(1). Ainsi f est solution.

B -

1. Soit yel. Il existe xe Rtel que y = f(x) d’ou f(y) =y +1.

2. Par le TV], I est un intervalle de R. Comme f(x) —o0, I n'est pas minoré. Soit a € 1. Pour tout
X——00

nelN,ona f"(a) = a+ n par la question précédente. On en déduit que I n’est pas majoré. AinsiI = R et
VyeR, f(y)=y+1.

oo I

=> ANALYSE. Soit f une solution.

© OnaVyeR, (fo f)(y) = y+ f(0)%. Comme fo f estinjective, f est injective.

o Soit x€ R*.Ona f(-x)? = f((—x)?+ f(0)) = f (x* + f(0)) = f(x)*. Ainsi f(—x) = + f(x). Puisque —x #
x et f est injective, on a f(—x) = — f(x). Par continuité de f en 0, on en déduit que f(0) = —f(0), ie
f(0) =0. Ainsi f est impaire.

© Comme f est continue et injective sur R, elle est strictement monotone. Puisque f est injective et
f(0)=0,0na f(1)#0dou f(1) = f(12+0) = f(1)®> > 0= f(0), f est strictement croissante.

T OnadoncVyeRR, (fof)(y) =y.Soit y € R. Raisonnons par I'absurde en supposant que f(y) # y.
O Cas1: f(y)>y.Onaalors f2(y) > f(y) > y par stricte croissance de f : c’est absurde.
O Cas2:y> f(y).Onaalors f2(y) < f(y) < y par stricte croissance de f : c’est absurde.
On en déduit que f =idR.

=> SYNTHESE. La fonction idR est clairement solution.

La fonction idR est 'unique solution au probleme.
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e -

Partie I — Solutions continues de E

1. Soit f: R — R une solution de E.

a. En choisissant (x, y) = (0,0), on obtient f(0) = 0. Pour y € R, on obtient donc f(y) + f(-y) =2f(y),
i.e. f(—y) = f(y).Ainsi f est paire.

b. Soit x € R. On démontrer que Yne N, f(nx) = nzf(x) par récurrence forte sur n.
= Linitialisation est claire car f(0) =0et f(1 x x) =1 x f(x).

= Soit n € IN*. Supposons la propriété vraie jusqu’au rang n. On a

fn+D)x) = f(nx+x) =2f(nx) +2f(x) - f(nx—x) = 2n° f(x) + 2f (x) — (n— 1)* f (x)
=2n*+2-n*+2n-1) f(x) = (n+1D*f(x)

d’ot1 la formule au rang n + 1.

c. SoitxeRet(p,gg e NxN*.Ona f (Sx) =p*f (%) la question précédente. De plus f (g) = % car,

par la question précédente :
X X
fw=r(aZ)=af (%)
q q
Ainsi f (sx) = Z—jf (x) puis, par parité de f (cf.la questionI.1.a.), Vr € Q, f(rx) = r?f(x).

d. Supposons que f est bornée au voisinage de 0. il existe alors a > 0 et M € R tels que

Vxe]l-a,af,

fw| <M

Soit A dans R}. Comme na +00, il existe ny € IN* tel que npa > A. Soit x €] — A, A[. Comme

n—+oo
X
o €]l—a,a[,ona

|f0)| = ng

X 2
— || < ngM
/ ( no ) ’ 0
par la question I.1.b. Ainsi, f est bornée sur ] — A, Al.

2. Soit f solution continue de E. Soit x € R. Par densité de Q dans R, il existe (7,),ew € QN tel que
Tn ———X. Comme f(r,) = r2f(1) (cf. la question 1.1.b.) pour tout n € IN. On obtient f(x) = x*f(1)
—T00

par passage a la limite dans cette relation, par continuité de f en x. Réciproquement, toute fonction de
la forme x — Ax? est clairement solution.

Partie II — Solutions bornées au voisinage de 0 de E

¢ (p"x)
qi’l

1. a. Soit x € R. On démontre par récurrence sur n € IN que ¢(x) =

= La propriété est banale au rang 0 car p° = g° = 1.
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= Soit n € IN. Supposons la propriété vraie au rang n. On a

q)(pnﬂx) — qq) (pnx) — qn+1¢(x)

‘d'ou la formule rang n + 1.

¢(x)| < M. Soit € > 0. Comme g"

+00, il existe

n—+oo
nOE]Ntelque%ge.Pourxe]—%,%[,onadonc
b(phox M
|¢(x)|=‘¥ S gng SE
q 0 q 0

Ainsi ¢(x) o 0. Comme ¢(0) = 0 (évaluez dans I’équation en x = 0), ¢ est continue en 0.
X—

. On déduitdul.l.b. que, pour tout x € R, f(2x) =4f(x). Ainsi, par la question II.1., f est continue en

0.

. SoitxeR.Ona

g2x)=fla+2x)—f(a)— fRx)=fla+x+x)—fla)-4f(x)=2f(a+x)+2f(x)— f(a)— f(a)—4f(x)
=2(fla+x) - f(a)- f(x) =2g(x)

. Notons A :=max(|a—1|,|a+1]). On sait que f est bornée sur | —A,A[ parle .1.d. Ainsi x — f(x+ a)

estbornée sur ]—1, 1[ tout comme x — f(x) (toujours parlel.1.d.) donc g est aussi bornée sur]—-1,1[
en tant que somme de fonctions bornées sur cet intervalle.

Commentaire

On a choisit A de facon a vérifier 'implication : —-1<x<1 = —-A<x+a<A.

On déduit des deux questions précédentes et su Il.1. que g est continue en 0. Ainsi, par continuité
de fenO (cf; Lell.2.a) f(x+a)—f(a) = g(x)+ f(x) g g(0)+ f(0) = 0 par opérations sur les limites.
X—

Ainsi f est continue en a. On en déduit que f est continue sur R donc f est de la forme x — ax? par
la partie I.

Partie I - Intersection des graphes dans le cas général

1. Soit d la fonction de [a, b] dans R définie par 5(x) := f(x) — x; 8 est continue en tant que différence de
deux fonctions continues. Comme [a, b] est stable par f,ona 6(a) = f(a)—a>0etd(b) = u(b)—b < 0.
On déduit du théoreme des valeurs intermédiaires I'existence de c dans [a, b] tel que 6(c) = 0.

2. a.

L'ensemble F non vide (par la question précédente appliquée a u sur [0, 1]), majoré et minoré (car

inclus dans [0, 1]), il admet donc des bornes supérieure et inférieure; nous les noterons m et M.

Soit (c,) ey € FN tel que ¢y, —— m Par continuité de f en m, on a f(cy,) f(m). Comme
— 100

n—oo
cn = f(cp) pour tout n € IN, on en déduit par passage a la limite quand n — +oo que f(m) = m. Ainsi

m € F. On démontre de méme que M € F.
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b. Soit x e F. On a u (v(x)) = v (u(x)) = v(x). Ainsi v(x) € F. Lensemble F est donc stable par v.

c. Comme (m,M) € F2 et F est stable par v, on en déduit que infF = m < v(m) et v(M) < M =supF. On
am=u(m)etM = u(M). Ainsi, u(m) < v(m) et v(M) < u(M). La fonction f := u— v est continue sur
[m,M] et vérifie f(M) > 0 et f(m) < 0, on déduit du théoreme des valeurs intermédiaires I’existence
de c dans [m,M] tel que f(c) =0, i.e. u(c) = v(c).

3. a. Posons f:= u—v. Comme f ne s’annule pas et est continue sur l'intervalle [0, 1] (en tant que diffé-
rence de deux fonctions continues), on déduit du théoréme des valeurs intermédiaires que f est de
signe constant sur [0,1]. Ainsiu—v>0ouv—-u>0.

b. Lafonction continue f = u—v admet un minimum p sur le segment [0, 1] par le théoréeme de Weiers-
trass. Comme f >0,onap>0etdoncVre[0,1], u(t) > A+ v(1).

c. Prouvons la propriété par récurrence sur 7.

= La propriété est clairement vraie pour n=0etn=1.

= Soit n € IN. Supposons la propriété vraie au rang n. Soit ¢ € [0,1]. Comme u(?) € [0,1], on a

uH ) > v (u(®) + nA
—_—
= u(v"(0)+nA
car uov" = v"ou. Comme u (v"(t)) = v (v"())+A, on en déduit que u**1(£) > v (D) +(n+1)A,
i.e.I'hypothese aurang n + 1.

d. On déduit de la question précédente que u"(0) > An pour tout n € IN. Comme A > 0, on en déduit
que u"(0) +00. Ceci est absurde car u”(0) € [0, 1] pour tout n € IN.

n—oo

Partie II - Etude du cas o1 'une des deux fonctions est monotone

1. a. Onreprend les notations et la démonstration du I.1. dans le cas ou f := u et (a, b) := (0,1). Comme
u est décroissante, 6 : x — u(x) — x est strictement décroissante : le point ot1 § s’annule est donc
unique.

b. Notons c I'unique point fixe de u. On a v(c) = v (u(c)) = u(v(c)), ainsi v(c) est un point fixe de u,
d’ol1 u(c) = c par unicité de celui-ci.

2. a. Notons F' I'ensemble des points fixes de v. Par symétrie des hypothéses sur u et v du I.1.a., on
déduit du I.1.a. que G est non vide. il existe donc ag € F'. On considere alors la suite (a,) ,en définie
parVneN, a,.1 = u(ay,). Elle existe bien car [0, 1] est stable par u. De plus, comme F’ est stable par
u (cf.1le 1.2)) et ag € F/, on prouve par une récurrence facile que Vn e N, a, € G, i.e. v(ay) = a,.

b. Supposons a; < ap. Démontrons que Vn € IN, a,+1 < a,. Soit n € IN. Supposons a,+; < a,. On a
donc u(a,+1) < u(ay) par croissance de u, d'olt a,+2 < a,+ etla propriété est vraie au rang n + 1.
On démontre de méme que si ag < a,, alors la suite (a,) ey est croissante. La suite (ay)eN est
donc monotone et bornée (car elle est a valeurs dans [0, 1]), elle converge donc par le théoreme de
la limite monotone.

c. Notons # la limite de (a,),,civ. Comme u et v sont continues en ¢, on a

u(an) u(f) et V(an)mv(f)

n—+oo
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On obtient donc u(f) = € et £ = v(¢) par passage a la limite n — +oo dans les relations de récurrence
VneN, a, = u(ay,) et a,+1 = v(ay). Ainsi £ est un point commun a u et v.

Partie I1I - Etude du cas oi1 'une des deux fonctions est 1-lipschitzienne

1. Soitx € [m,M].On a
ux)—um) < lux)—um)| < lx-m|l=x-m

Comme u(m) = m, on en déduit que u(x) < x. De plus :
uM) —u(x) < luM)—ux)| < M—x[=M-x

Comme u(M) =M, on obtient u(x) > x. Ainsi u(x) = x d’'ou [m,M] c F. Linclusion réciproque est vraie
car m et M sont les bornes inférieures et supérieures de F.

2. Comme F = [m,M] est stable par v (cf. le [.2.b.), on déduit du I.1. que v admet un point fixe dans [m, M].
Ainsi u et v ont un point fixe commun.

Partie IV — Ensembles équicontinus et théoréme de Cano

1. a. Pourne Netxe[0,1],ona|p,(x)—p,0)|=x"<xsin#0et|py(x)—po(0)|=0.Poure >0etd:=¢,
on adonc
VnelN, Vxe[0,1], |xI <8 = |pn(x)—pn(0)| <

Ainsi . est équicontinu en 0.

b. Raisonnons par I'absurde en supposant que .# est équicontinu en 1. Il existe alors & > 0 tel que

VnelN, ¥xe[0,1], [x-1 <8 = [x"-1| <

N |~

En particulier, [(1-08)" - 1| < 2 pour tout n € IN. Ceci est absurde car (1 -8)" -1 —— —1.

n—+oo
c. SoitnE]N*,ae]O,l[etp>0telque la— p,a+p] c]O 1[.
Pour x€[a-p,a+pl,onax"—a"=(x—a)Y]_ x ka"*1 d’oir

|x" —a"| < |x—aln(a+p)*!

Comme n(a+p)"!
n—+oo
p)n—l

0 par croissances comparées, il existe une constante K telle que n(a +

< K pour tout . € IN*. Soit € > 0. Posons & := min (8, ¢). Par ce qui précede, on a
vnelN,Vxela-6,a+9], |x"—a”| <e

Ainsi .Z est-il équicontinu en a.
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Remarque

Pour n=0,0na|x"—a" =

thése ne IN*.

0 c’est pour cela que nous sommes placés directement sous ’hypo-

2. C’est clair car pour tout n€ IN et (x,a) € [0,1]>, on a

|u"(x0) - u"(@)| < |x-al

3. Comme F n’est pas un intervalle, il existe (a,3) € F? tel que a <P et Iy €]a, B[ vérifiant y ¢ F. Supposons
u(y) > y. Notons
a:=sup{xeF;x<y} et b:=inf{xeF; x>y}

Ces bornes existent car les deux ensembles sont non vides (ils contiennent respectivement « et ) et

sont bornés. Montrons que a est un maximum. Soit (@) nev une suite de {x € F; x < Y}]N convergeant
vers a. On a a < y par passage a la limite dans I'inégalité Vn € IN, a, <y. Comme u(a,) = a, pour tout
n € IN, on obtient par passage a la limite que u(a) = a donc a < y. On prouve de méme que b est un
maximum. Comme Fn]a, b[= &, la fonction x — u(x) — x est continue et s’annule pas sur I'intervalle
la, b, on déduit du théoréme des valeurs intermédiaires que d garde un signe constant sur ]a, b|. Ainsi
Vx€la,bl, u(x) >xouVxela,bl, u(x)<x.

b-a .
2

b. Raisonnons par I'absurde en supposant que Vx €]a, b[, u(x) < b. Lintervalle ]a, b] est alors stable
par u donc u"(a’) €]a,b] pour tout n € N. Ainsi, pour tout n € N, u"(a’) < u"*(a’) = u(u"(a))).
Ainsi (u"(a')) e est croissante majorée par b, elle converge donc vers un réel £ €]a, b]. Comme u
est continue, ¢ est un point fixe de u. Or, sur ]a, b], le seul point fixe de u est b. Ainsi ¢ = b. Ceci est
absurde, gar par passage a la limite n — +oo dans 'inégalité de la question précédente, on obtient
|b—al < %%

4. a. Il suffit d’appliquer la définition de I’équicontinuité en a avec € :=

c. Il existe ¢ dans ]a, b[ tel que u(c) > b. Comme u(c) > b > u(a) car u(a) = a, on déduit du théoreme
des valeurs intermédiaires I'existence de xg €]a, c[ tel que u(xp) = b.

d. Comme (y,),ev est décroissante minorée par a, elle converge vers une limite ¢ € [a, b[. Par conti-
nuité de u en ¢, on déduit de la relation de récurrence par passage a la limite n — +oo que £ = u(f).
Comme I'unique point fixe de u sur [a, b[ est a, on a { = a.

e. On trouve que U ¥n) = b pour tout n € IN, par une récurrence facile.
f. Appliquons la définition de I'équicontinuité de (©") ey avec € := %- Il existe 6 > 0 tel que

b—a
2

VpeN, Vxe[0,1], |[x—al < 8§ = |uP(x)-al| <

Soit alors np € IN tel que |y,, —al < 6.0na
b—a

Ib—al = |u"" (yn,) —a] < >

Ce qui est absurde.

5. On a démontré que, sous les hypothéses de ce sujet (cf. le début de I'énoncé), I'équicontinuité de
{u™"; n € N} est une condition suffisante pour que les graphes de u et v aient une intersection non
vide.
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