
Ù AN 3 Introduction à la topologie deR etC

L’objectif de ce chapitre est d’initier le lecteur à la topologie deR et C, préalable à
la définition de la notion de limite pour les suites et les fonctions.
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L A notion de limite est le point de départ de l’analyse. Elle permet de s’affranchir de la finitude
des calculs algébriques afin de réaliser une infinité d’opérations, comme par exemple dans la
relation +∞∑

k=0

1

2k
:= lim

n→+∞

n∑
k=0

1

2k
= 1

On se pose ici la question de savoir ce que devient

n∑
k=0

1

2k

lorsque n prend des valeurs de plus en plus grandes. Passons à un autre exemple : considérons un
polynôme P. On sait calculer

P(x)−P(0)

x
pour x non nul. La question est : qu’obtient-on en choisissant des valeurs successives de x de plus en
plus petites ? La notion de limite est un outil puissant pour créer de nouveaux objects mathématiques,
citons par exemple les dérivées et les intégrales, bien connues du lecteur.

Dans toute ce chapitre K =R ou C. La topologie a pour objet de définir un cadre rigoureux au sein
duquel pourra être définie la notion de limite et tout ce qui en découle.

1. Un nouveau point de vue sur les limites

Nous exposerons dans ce bref paragraphe la notion de voisinage, essentielle pour définir celle de li-
mite.

1.1. Points intérieurs, points adhérents et voisinages d’un point

Définition 3.0. Boules

Soit a ∈K et ρ ∈R∗+. On appelle :

Boule ouverte de centre a et de rayon ρ l’en-
semble :

B(a,ρ) := {
z ∈K ; |z −a| < ρ

}
Boule fermée de centre a et de rayon ρ l’en-
semble :

B(a,ρ) := {
z ∈K ; |z −a| ⩽ ρ

}

B(a,ρ)

a

ρ

B(a,ρ)

a

ρ

B(a,ρ) = ]a −ρ, a +ρ[

a

ρ

a −ρ a +ρ

B(a,ρ) = [a −ρ, a +ρ]

a

ρ

a −ρ a +ρ

On reconnaît des disques de centre a dans le cas de C et des intervalles centrés en a dans le cas de
R. En général, il n’y aura pas d’ambiguité sur le fait de travailler dansR ouC, nous n’aurons donc pas
besoin d’une notation des boules distincte pour les cas complexes et réels.
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Point de A, non intérieur

Point intérieur

Point adhérent mais pas dans A

Point non adhérent et pas dans A

Définition 3.1. Point intérieur, voisinages, point adhérent

Soit A une partie deK et x ∈K.

On dit que x est intérieur à A s’il existe α> 0 tel que B(x,α) ⊂ A.

On appelle voisinage de x toute partie V deK telle que x soit intérieur
à V.

Pour y ∈K, on note Vy l’ensemble des voisinages de y .

Soit y ∈K. On dit que y est adhérent à A si, ∀V ∈Vy , V ∩A ̸=∅.

Bien qu’également définies dans R, il est préférable de se forger une solide intuition de ces notions
dans le plan. Les figures en dimension un sont en effet peu évocatrices, à cause de l’aplatissement dû
à cette dimension.

Les point intérieurs (resp. adhérents) de [0,1[ sont les éléments de ]0,1[ (resp. de [0,1]). Ci-dessous,
A := [0,1[ apparaît en bleu, 0 est non intérieur à A, 1 est adhérent à A, 0,66 est intérieur à A et 1,5
est non adhérent et n’appartient pas à A. Nous avons dessiné les boules ouvertes dans le plan afin
de ne rendre cette figure plus lisible (il faudrait en fait considérer les intervalles ouverts qui sont les
intersections de ces boules avec l’axe réel) :

Définition 3.2. Extension de ces définitions àR

Les voisinages de ±∞ seront utilisés pour des limites infinies ou en plus ou moins infini.

On appelle voisinage de +∞ (resp. −∞) tout V ⊂R tel que

∃M ∈R, [M,+∞[⊂ V (resp. ]−∞,M] ⊂ V)

Pour y ∈R, on note Vy l’ensemble des voisinages de y .

Soit y ∈R. On dit que y est adhérent à A si, ∀V ∈Vy , V ∩A ̸=∅.

La notion de voisinage est stable par intersection finie.

Proposition 3.3. Propriétés des voisinages

Soit x et x ′ dansR.

a. L’intersection d’un nombre fini de voisinages de x est un voisinage de x.

b. Si x ̸= x ′, alors il existe des voisinages V et V′ de x et x ′ tels que V ∩V′ =∅.

1.2. Retour aux suites de nombres réels

La notion de voisinage permet d’unifier les différentes définitions sur les limites.
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Lemme 3.4. Définition de la limite via les voisinages

Soit (un)n∈N ∈RN et ℓ ∈R. On a

un −−−−−→
n→+∞ ℓ ⇐⇒ ∀V ∈ Vℓ , ∃n0 ∈N , ∀n ∈ �n0,+∞� , un ∈ V

Nous verrons plus loin dans le cours que cette définition se généralise à des suites à valeurs dans des
espaces E beaucoup plus généraux queR ouC.

2. Convergence des suites de nombres complexes

La définition de la convergence dans le cas complexe s’obtient en remplaçant la valeur absolue par le
module.

Définition 3.5. Convergence

Soit (un)n∈N ∈CN.

On dit que (un)n∈N converge s’il existe ℓ ∈C tel que

∀V ∈ Vℓ , ∃n0 ∈N , ∀n ∈ �n0,+∞� , un ∈ V

Ceci équivaut à ∀ε> 0, ∃n0 ∈N, ∀n ∈ �n0,+∞�, |un −ℓ|⩽ ε.

En cas de convergence, le nombre ℓ de la définition est unique et appelé limite de la suite
(un)n∈N et, comme dans le cas des suites réelles, on note

un −−−−−→
n→+∞ ℓ

Puisque que le module d’un nombre réel est égal à sa valeur absolue, cette définition est bien cohé-
rente avec celle de AN 2 lorsque la suite est à valeurs réelles.

On peut bien-sûr caractériser la convergence d’une suite au moyen des suites des parties réelles et
imaginaires.

Proposition 3.6. Convergence des suites complexes

Soit (un)n∈N ∈CN et ℓ ∈C.

a. un −−−−−→
n→+∞ ℓ si et seulement si Reun −−−−−→

n→+∞ Reℓ et Im un −−−−−→
n→+∞ Im ℓ ;

b. Si un −−−−−→
n→+∞ ℓ, alors |un | −−−−−→

n→+∞ |ℓ|.

c. Pour tout n ∈N, on note un = |un |e iθn avec θn ∈R.

Si |un | −−−−−→
n→+∞ r et θn −−−−−→

n→+∞ θ, alors un −−−−−→
n→+∞ r e iθ

Attention, dans le cas où θn est un argument de zn pour tout n ∈N et (zn)n∈N converge, on ne peut
conclure que (θn)n∈N converge. Par exemple :

∀n ∈N , e2iπ(−1)n = 1

LLG . HX 6 4
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Définition 3.7. Suites bornées

Une suite (un)n∈N de nombres complexes est dite bornée si

∃M > 0, ∀n ∈N , |un | ⩽ M

Ceci équivaut à l’existence d’une boule fermée de centre 0 contenant tous les termes de la suite.

Voir ci-contre l’illustration de la définition d’une suite
bornée (un)n∈N (les points d’affixe un sont en vert).

Une suite est bornée si et seulement si on ne peut trou-
ver des termes arbitrairement éloignés de l’origine.

En l’absence d’une relation d’ordre compatible avec
l’addition 1, les théorèmes liés à la relation d’ordre surR
n’ont pas d’équivalents pour les suites complexes (théo-
rème d’encadrement, limite monotone, etc). En reve-
nant aux parties réelle et imaginaire, on pourra cepen-
dant utiliser tous les théorèmes sur les suites réelles.

Proposition 3.8. Convergence et caractère borné

Toute suite de complexes convergente est bornée.

La réciproque est clairement fausse 2. L’ensemble des résultats sur les opérations sur les suites conver-
gentes s’étendent au cas complexe avec des démonstrations semblables au cas réel.

Proposition 3.9. Opérations sur les limites

Soit (un)n∈N et (vn)n∈N des suites de complexes convergentes de limites respectives ℓ1 et ℓ2.

a. On a un + vn −−−−−→
n→+∞ ℓ1 +ℓ2 et un vn −−−−−→

n→+∞ ℓ1ℓ2.

b. Supposons ℓ2 ̸= 0. Alors vn ̸= 0 APCR,
1

vn
−−−−−→
n→+∞

1

ℓ2
et

un

vn
−−−−−→
n→+∞

ℓ1

ℓ2
·

Le théorème de Cesàro est appliquable dans le cas complexe sous l’hypothèse de convergence de
la suite. La démonstration du cas réel est entièrement transposable au cadre complexe, moyennant
l’utilisation du module en lieu et place de la valeur absolue.

Proposition 3.10. (Suites géométriques complexes)

Soit z ∈C. Si |z| < 1, alors zn −−−−−→
n→+∞ 0, et si |z| > 1, alors |zn | −−−−−→

n→+∞ +∞.

Considérons z := |z|e iθ avec θ ∈R tel que θ ̸= 0[π] 3 et |z| ̸= 1. On a, pour tout entier naturel n,

zn = |z|ne i nθ

1. Il n’existe aucune relation d’ordre ≼ surC telle que ∀(a,b,c,d) ∈C4,
(

a ≼ b et c ≼ d
) =⇒ a + c ≼ b +d .

2. Puisqu’elle l’est dans le cas réel.
3. Le cas réel a déjà été traité.

LLG . HX 6 5
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L’évolution de la suite
(
zn

)
n∈N est donc clair : lorsque |z| > 1, ses termes s’éloignent indéfiniment de

l’origine en spiralant (on a nθ −−−−−→
n→+∞ +∞). Dans le cas où |z| < 1, les termes de la suite convergent

vers l’origine en spiralant.

Nous avons représenté ci-dessous les premiers termes de la suite
(
zn

)
n∈N dans des cas où |z| = 0,99

et |z| = 1,01 (le terme initial 1 – z0 – est en rouge sur la figure). On observe une convergence vers zéro
en spirale et une divergence du même type.

Divergence dans le cas complexe

La divergence vers ±∞ des suites réelles n’a pas d’analogue dansC : la suite peut « partir à l’infini »
dans une direction ou en spiralant, etc. On se contentera de la propriété |un | −−−−−→

n→+∞ +∞.

Le cas où |z| = 1 est plus délicat et hors-programme. Il est cependant facile de constater que
∣∣zn | = 1

pour tout n ∈N et que le point d’affixe zn « tourne » sur le cercle :

z0

z1

z2

z3

LLG . HX 6 6
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Si z est une racine de l’unité, alors la suite
(
zn

)
n⩾0 est périodique (nous avons représenté le cas d’une

racine trentième de l’unité).

Dans le cas contraire, la suite
(
zn

)
n⩾0 a un comportement beaucoup difficile à appréhender : au voi-

sinage de tout point du cercle, on peut trouver un terme de la suite.

Plus précisément, pour tout u ∈U et tout voisinage
V de u, V contient un une puissance de z. On dit que
l’ensemble {

zn ; n ∈N}
est dense 4dansU (cf. le paragraphe suivant). Quand
on « reserre » le voisinage (en rouge ci-contre), il faut
effectuer plus d’itérations avant d’obtenir un terme
de zn à l’intérieur.

3. Parties denses deK

Nous avons à plusieurs reprises dans ce cours rencontré une propriété d’approximation : on peut
trouver des nombres rationnels arbitrairement proches d’un nombre réel x donné (cf. la résolution
de l’équation de Cauchy dans ALG 1) et on peut trouver des termes de

(
zn

)
n∈N arbitrairement proche

d’un nombre u de module un donné lorsque z n’est pas une racine de l’unité.

L’idée d’un sous-ensemble contenant, pour tout élément x deR (ou C), des éléments arbitrairement
proches de x est formalisée par la notion de parties denses.

Définition 3.11. Parties denses

Soit A un sous-ensemble deK.

A est dit dense dansK si toute boule ouverte deK contient au moins un élément de A.

Cette définition est équivalente à la proposition suivante :

∀x ∈K , ∀V ∈ Vx , V ∩A ̸=∅

En résumé, A est dense dansK si et seulement si tout élément deK est adhérent à A.

Plus généralement, on dit que A est dense dans une partie E deK si A ⊂ E et tout élément de E
est adhérent à A.

Comme ]0,1[ est un voisinage de 1
2 etZ∩ ]0,1[=∅ l’ensembleZ n’est pas dense dansR.

L’ensembleR\Z est dense dansR. Soit x ∈R et ε> 0. Comme ]x −ε, x +ε[ n’est pas inclus dansZ,
]x −ε, x +ε[∩(R\Z) ̸=∅.

Proposition 3.12. Densité deD,Q etR\Q

Les partiesD,Q etR\Q sont denses dansR.

Comme dans le cas des bornes, la densité admet une caractérisation séquentielle très intéressante.

4. Ce théorème est hors programme.

LLG . HX 6 7
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Proposition 3.13. (Caractérisation séquentielle de la densité)

Une partie A de K est dense dans K si et seulement si , pour tout x dans K, il existe une suite
d’éléments de A qui converge vers x.

On a vu queQ est dense dansR et, ce qui est une propriété plus forte, l’ensembleD des nombres dé-
cimaux est dense dansR. On peut en redonner une démonstration au moyen des suites numériques.
Soit x un nombre réel. On cherche à construire une suite de nombres décimaux (un)n∈N qui converge
vers x. Quitte à considérer la suite des opposés, on peut supposer que x est positif. L’écriture sous
forme décimale de x va nous en fournir une sur un plateau :

x = am · · ·a1 , c1c2 · · ·cncn+1 · · ·
L’idée est de construire la suite de terme général un = am · · ·a1 , c1c2 · · ·cn et de prouver qu’elle
converge vers x. Pour cela, on commence par décaler la virgule :

10n x = am · · ·a1c1c2 · · ·cn , cn+1 · · ·
puis on supprime les chiffres après la virgule en extrayant la partie entière de ce nombre, et finalement
on replace la virgule au bon endroit :⌊

10n x
⌋ = am · · ·a1c1c2 · · ·cn et

⌊10n x⌋
10n

= am · · ·a0 , c1c2 · · ·cn

On va donc choisir un := ⌊10n⌋
10n pour tout n ∈N. On peut démontrer que cette suite converge vers x

sans passer par le développement décimal de x – et il est même plus simple de suivre ce chemin. Pour
tout entier naturel n, on déduit de l’encadrement de la partie entière que

∀n ∈N , x − 1

10n
< un ⩽ x

Et la convergence de (un)n∈N vers x est donc clairement par le théorème d’encadrement.

4. Le théorème de Bolzano-Weierstrass

m M

Comme on peut en avoir l’intuition géomé-
trique, une suite bornée s’accumule quelque
part, i.e. admet une suite extraite conver-
gente.

Théorème 3.14. (Bolzano-Weierstrass)

Une suite bornée d’éléments deK admet une sous-suite convergente.

On commence par démontrer ce théorème pour les suites réelles et le cas complexe en sera un corol-
laire. Dans le cas réel, une démonstration de ce théorème consiste à établir que l’on peut extraire de
toute suite de nombres réels une suite monotone. Cette propriété est connue dans le monde anglo-
saxon sous l’appellation de Rising sun lemma.

LLG . HX 6 8
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Lemme 3.15. (Rising sun lemma)

Toute suite de nombres réels admet une suite extraite monotone.

La démonstration requiert la définition d’un pic : on dit que la suite (un)n∈N présente un pic en un
entier m si ∀n ∈N tel que n ⩾ m, on a um ⩾ un . L’appellation de ce lemme, au pouvoir si évocateur
que nous n’avons pas résisté à l’adopter dans ce cours en Français 5, vient du fait qu’un soleil situé en
+∞ sur l’axe des abscisses éclairant le graphe d’une suite (un)n∈N voit soit un nombre infini de pics,
soit un nombre fini :

S’il y a une infinité de pics, alors « la suite extraite
des pics » est décroissante.

Sinon, en partant du terme suivant le dernier pic,
on construit une extraction croissante de la suite.

5. Les suites de Cauchy

Àu delà de la définition, nous disposons d’une poignée de stratégies pour démontrer la convergence
d’une suite (un)n∈N de nombres réels : étudier sa monotonie, essayer de l’encadrer, l’écrire sous la
forme d’une moyenne arithmétique afin d’appliquer l’un des grands théorèmes 6. La notion de suite
de Cauchy nous ouvre une quatrième voie.

Définition 3.16. Suites de Cauchy

Une suite (un)n∈N d’éléments deK est dite de Cauchy si

∀ε> 0, ∃n0 ∈N , ∀n ⩾ n0 , ∀m ⩾ n0 , |un −um | ⩽ ε

D’un point de vue intuitif, cette propriété d’accumulation asymptotique des termes de la suite
(un)n∈N est équivalente à sa convergence.

Théorème 3.17. (Convergence des suites de Cauchy).

Une suite d’éléments deK converge si et seulement si elle est de Cauchy.

Ce théorème présente le même avantage démonstratif que celui de la limite monotone : nul besoin
de conjecturer la limite de la suite pour établir sa convergence. Mais cet avantage est aussi un point
faible, ce critère ne permettant pas d’expliciter la limite de la suite.

Nous n’utiliserons cette notion qu’à une seule reprise dans ce cours d’analyse, au moment de la
construction de l’intégrale.

5. Lorsqu’elle est surnommée, cette propriété est plutôt qualifiée de lemme des Pics dans les ouvrages en Français.
6. C’est-à-dire les théorèmes de la limite monotone, d’encadrement et de Césaro.

LLG . HX 6 9
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6. Tests

3.1. 4 �

Une intersection infinie de voisinage est-elle encore un voisinage ? On pourra considérer les inter-
valles définis par

Vn :=
]
− 1

n
,

1

n

[

3.2. 4 �

Montrer que l’ensemble
{

r 3 ; r ∈Q}
est dense dansR.

LLG . HX 6 10
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7. Solutions

3.1. ; �

On a ⋂
n∈N

Vn = {
0
}

Cette intersection n’est pas un voisinage de 0
alors que tous les Vn le sont.

3.2. ; �

Soit x et y des réels tels que x < y . CommeQ est
dense dans R, il existe r ∈ Q tel que 3

p
x < r <

3
p

y , ie x < r 3 < y . On en déduit que
{

r 3 ; r ∈Q}
est dense dansR.

LLG . HX 6 11
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