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Lobjectif de ce chapitre est d'initier le lecteur a la topologie de R et C, préalable a
la définition de la notion de limite pour les suites et les fonctions.
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des calculs algébriques afin de réaliser une infinité d’opérations, comme par exemple dans la

L A notion de limite est le point de départ de I'analyse. Elle permet de s’affranchir de la finitude
relation

+ool

Zﬁi

k=0

LA |
2!

n—>+oo
On se pose ici la question de savoir ce que devient

y L

im0 2k

lorsque n prend des valeurs de plus en plus grandes. Passons a un autre exemple : considérons un

polyndéme P. On sait calculer
P(x)-P(0)

X
pour x non nul. La question est : qu'obtient-on en choisissant des valeurs successives de x de plus en
plus petites ? La notion de limite est un outil puissant pour créer de nouveaux objects mathématiques,
citons par exemple les dérivées et les intégrales, bien connues du lecteur.

Dans toute ce chapitre K = R ou C. La topologie a pour objet de définir un cadre rigoureux au sein
duquel pourra étre définie la notion de limite et tout ce qui en découle.

1. Un nouveau point de vue sur les limites

Nous exposerons dans ce bref paragraphe la notion de voisinage, essentielle pour définir celle de li-
mite.

1.1. Points intérieurs, points adhérents et voisinages d’un point

Définition 3.0. Boules

B(a,p) B(a,p)
Soitae K etpe RY. On appelle : T
= Boule ouverte de centre a et de rayon p l'en- ;oa \\'
semble : \ o i

B(a,p) := {zE]K;Iz—a|<p} .
= Boule fermée de centre a et de rayon p l'en- B(a,p) =la-p,a+pl B(a,p)=[a—-p,a+p]
semble : 0 .

B(a,p) := {zeK;|z—al < p} a-p a a+p a-p a a+p

On reconnait des disques de centre a dans le cas de C et des intervalles centrés en a dans le cas de
R. En général, il n'y aura pas d’ambiguité sur le fait de travailler dans R ou C, nous n’aurons donc pas
besoin d'une notation des boules distincte pour les cas complexes et réels.
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Point de A, non intérieur Définition 3.1. Point intérieur, voisinages, point adhérent

Soit A une partie de KK et x € KK.

Potntintérieur & o} = On dit que x est intérieur a A s'il existe a > 0 tel que B(x,a) c A.

R

Pointadhérent mais pas dansA, | => On appelle voisinage de x toute partie V de K telle que x soit intérieur

’
’ N
//7_\\ ’,’ a V.
o - =~
N
-7

1

1
1
1

/
_____ \

o = Pour y € K, on note ¥}, I'ensemble des voisinages de y.

L~
(o)
<

Point non adhérent et pas dans A = Soit y € K. On dit que y est adhérenta Asi, VV e ¥, VNA # 2.

Bien qu’également définies dans R, il est préférable de se forger une solide intuition de ces notions
dans le plan. Les figures en dimension un sont en effet peu évocatrices, a cause de I'aplatissement d
a cette dimension.

Les point intérieurs (resp. adhérents) de [0, 1[ sont les éléments de ]0,1[ (resp. de [0, 1]). Ci-dessous,
A :=[0,1[ apparait en bleu, 0 est non intérieur a A, 1 est adhérent a A, 0,66 est intérieur a A et 1,5
est non adhérent et n'appartient pas a A. Nous avons dessiné les boules ouvertes dans le plan afin
de ne rendre cette figure plus lisible (il faudrait en fait considérer les intervalles ouverts qui sont les
intersections de ces boules avec I'axe réel) :

Définition 3.2. Extension de ces définitions a R

Les voisinages de +oo seront utilisés pour des limites infinies ou en plus ou moins infini.

= On appelle voisinage de +oo (resp. —oo) tout V c R tel que
IMeRR, [M,+oo[cV (resp.] —oo,M] cV)

= Pour y € R, on note 7y 'ensemble des voisinages de y.

= Soit y € R. On dit que y est adhérent 2 A si, YV € Yy, VNA# 2.

La notion de voisinage est stable par intersection finie.

Proposition 3.3. Propriétés des voisinages

Soit x et x’ dans R.
a. Lintersection d'un nombre fini de voisinages de x est un voisinage de x.

b. Si x # x/, alors il existe des voisinages V et V' de x et x’ tels que VNV’ = 2.

1.2. Retour aux suites de nombres réels

La notion de voisinage permet d’'unifier les différentes définitions sur les limites.
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Lemme 3.4. Définition de la limite via les voisinages

Soit (n) pew € RN et €€ R.On a

Uy ¢ < VYVe¥,dnyelN, Vne [ng,+ool, u, eV

n—+oo

Nous verrons plus loin dans le cours que cette définition se généralise a des suites a valeurs dans des
espaces E beaucoup plus généraux que R ou C.

2. Convergence des suites de nombres complexes

La définition de la convergence dans le cas complexe s’obtient en remplacant la valeur absolue par le
module.

Définition 3.5. Convergence

Soit () pey € CN.

= On dit que (u,) ey converge s'il existe € € C tel que
VYVebp, Ange N, Vne [ng, +ool, u, eV

= Ceci équivauta Ve >0,3ng e N, Vn € [ng, +ool, |u, — 0] <e.

= En cas de convergence, le nombre ¢ de la définition est unique et appelé limite de la suite
(#5) new et, comme dans le cas des suites réelles, on note

)

Un
n—+oo

Puisque que le module d'un nombre réel est égal a sa valeur absolue, cette définition est bien cohé-
rente avec celle de AN 2 lorsque la suite est a valeurs réelles.

On peut bien-str caractériser la convergence d’'une suite au moyen des suites des parties réelles et
imaginaires.
Proposition 3.6. Convergence des suites complexes

Soit (1) pey € CN et £ € C.

¢ si et seulement si Re u, Rel et Im uy,

n—+oo n—+oo n—+oo

[€].

Im#;

a. u,

b. Siu, —— ¢, alors |uy|
n—+oo n—+oo

c. Pour tout n € IN, on note u,, = |u,|e!% avec, € R.
i0

i n n ) n
Si|u,| —— ret0, —— 0, alors u,, —— re
n—+oo n—+oo n—+oo

Attention, dans le cas ou 0, est un argument de z, pour tout n € IN et (z,) ,eIN converge, on ne peut
conclure que (0,,) ,ew converge. Par exemple :

VnelN, 20" —q

LLG ¥ HX6 4



2025-2026 Laurent Kaczmarek

Définition 3.7. Suites bornées

Une suite (u,) ,eiv de nombres complexes est dite bornée si
IM>0,VneN, |lu,| <M

Ceci équivaut a I'existence d'une boule fermée de centre 0 contenant tous les termes de la suite.

Voir ci-contre l'illustration de la définition d’une suite
bornée (u;) ,ev (les points d’affixe u;, sont en vert).

Une suite est bornée si et seulement si on ne peut trou-
ver des termes arbitrairement éloignés de I'origine.

En I'absence d’'une relation d’ordre compatible avec
I'addition’, les théoremes liés a la relation d’ordre sur R
n’'ont pas d’équivalents pour les suites complexes (théo-
reme d’encadrement, limite monotone, etc). En reve-
nant aux parties réelle et imaginaire, on pourra cepen-
dant utiliser tous les théoremes sur les suites réelles. .

Proposition 3.8. Convergence et caractere borné

Toute suite de complexes convergente est bornée.

La réciproque est clairement fausse >. Lensemble des résultats sur les opérations sur les suites conver-
gentes s’étendent au cas complexe avec des démonstrations semblables au cas réel.

Proposition 3.9. Opérations sur les limites

Soit (1) nelv €t (V) nelw des suites de complexes convergentes de limites respectives ¢, et £5.

a. Ona u, + vy, 01+ 0 et uyv, — 0105.
n—+oo

n—+oo

e
n—+oo f, v, n—+oo 0,

1
b. Supposons ¢ # 0. Alors v, # 0 APCR, —

Un

Le théoreme de Cesaro est appliquable dans le cas complexe sous I'hypothése de convergence de
la suite. La démonstration du cas réel est entierement transposable au cadre complexe, moyennant
I'utilisation du module en lieu et place de la valeur absolue.

Proposition 3.10. (Suites géométriques complexes)

Soit z€ C. Si |z| < 1, alors 2" ——— 0, et si |z| > 1, alors |z +00.
+
n—+o0

n—+oo

Considérons z := |z|e'® avec 0 € R tel que 0 # 0[] 3et|z| #1.0na, pour tout entier naturel 7,

7" = |Z|nein9

1. Il n’existe aucune relation d’ordre < sur C telle que V(a, b, ¢, d) € C4, (a <betc< d) = a+c<b+d.
2. Puisqu’elle I'est dans le cas réel.
3. Le cas réel a déja été traité.

LLG ¥ HX6 5
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L'évolution de la suite (z”) nelN €st donc clair : lorsque |z| > 1, ses termes s’éloignent indéfiniment de
'origine en spiralant (on a n0 +00). Dans le cas ol |z| < 1, les termes de la suite convergent

n—+oo
vers |'origine en spiralant.
Nous avons représenté ci-dessous les premiers termes de la suite (z")ne]N dans des cas ou |z| = 0,99
et |z| = 1,01 (le terme initial 1 — z° — est en rouge sur la figure). On observe une convergence vers zéro
en spirale et une divergence du méme type.

A
° °
° °
°
°
o". °
°
°
°
o oo ° °
o ° o
L4 ..a-. ° L4 °
° ° ° ° .
. °
d °
° °
° °
° °
e ° ° .
° * o .
° ° R °
LJ °
° ° °
.. ° L]
. ° ole © N
°
u. °
° °
o | o o
°
°
°
° ° °

Divergence dans le cas complexe

La divergence vers oo des suites réelles n’a pas d’analogue dans C : 1a suite peut « partir a I'infini »
dans une direction ou en spiralant, etc. On se contentera de la propriété |u,| +00.

n—+oo

Le cas ou |z| = 1 est plus délicat et hors-programme. Il est cependant facile de constater que |z”| =1
pour tout n € IN et que le point d’affixe z" «tourne » sur le cercle :

LLG ¥ HX6 6
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Si z est une racine de I'unité, alors la suite (z”)n>0 est périodique (nous avons représenté le cas d'une
=
racine trentieme de 1'unité).

Dans le cas contraire, la suite (z") 2>0 @ un comportement beaucoup difficile a appréhender : au voi-
sinage de tout point du cercle, on peut trouver un terme de la suite.

Plus précisément, pour tout u € U et tout voisinage
V de u, V contient un une puissance de z. On dit que

I'ensemble
{z"; neN}

est dense *dans U (cf. le paragraphe suivant). Quand
on «reserre » le voisinage (en rouge ci-contre), il faut
effectuer plus d’itérations avant d’obtenir un terme
de z"" al'intérieur.

3. Parties denses de K

Nous avons a plusieurs reprises dans ce cours rencontré une propriété d’approximation : on peut
trouver des nombres rationnels arbitrairement proches d’'un nombre réel x donné (cf. la résolution
de I'équation de Cauchy dans ALG 1) et on peut trouver des termes de (z") LN arbitrairement proche
d’'un nombre u de module un donné lorsque z n’est pas une racine de I'unité.

Lidée d'un sous-ensemble contenant, pour tout élément x de R (ou C), des éléments arbitrairement
proches de x est formalisée par la notion de parties denses.
Définition 3.11. Parties denses

Soit A un sous-ensemble de K.

= A est dit dense dans KK si toute boule ouverte de K contient au moins un élément de A.

= Cette définition est équivalente a la proposition suivante :
VxeK,YWe¥, VNA#2

En résumé, A est dense dans IK si et seulement si tout élément de K est adhérent a A.

= Plus généralement, on dit que A est dense dans une partie E de KK si A c E et tout élément de E
est adhérent a A.

X Comme |0, 1[ est un voisinage de % et Zn]0,1[= @ 'ensemble Z n’est pas dense dans R.

X Lensemble R\ Z est dense dans R. Soit x € R et € > 0. Comme | x — €, x + €[ n'est pas inclus dans Z,
lx—g,x+e[N(R\Z) # 2.

Proposition 3.12. Densitéde D, Q et R\ Q)
Les parties D, Q et R\ @ sont denses dans R.

Comme dans le cas des bornes, la densité admet une caractérisation séquentielle trés intéressante.

4. Ce théoréeme est hors programme.

LLG ¥ HX6 7
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Proposition 3.13. (Caractérisation séquentielle de la densité)

Une partie A de K est dense dans K si et seulement si , pour tout x dans I, il existe une suite
d’éléments de A qui converge vers x.

On a vu que @) est dense dans R et, ce qui est une propriété plus forte, 'ensemble D des nombres dé-
cimaux est dense dans R. On peut en redonner une démonstration au moyen des suites numériques.
Soit x un nombre réel. On cherche a construire une suite de nombres décimaux (u,) ,elv qui converge
vers x. Quitte a considérer la suite des opposés, on peut supposer que x est positif. Lécriture sous
forme décimale de x va nous en fournir une sur un plateau :

X = Gp-- A, €16 Cplpy1

Lidée est de construire la suite de terme général u, = a,,---a;, cic2---c, et de prouver qu’elle
converge vers x. Pour cela, on commence par décaler la virgule :

n
10%x = A A1C1C2*Cpy Cpygl """

puis on supprime les chiffres apreés la virgule en extrayant la partie entiere de ce nombre, et finalement
on replace la virgule au bon endroit :

n (10" x]
|10"x| = ap---arcrco-+cp et on = Gmedo, G
On va donc choisir u, := L}g_nJ pour tout n € IN. On peut démontrer que cette suite converge vers x

sans passer par le développement décimal de x — et il est méme plus simple de suivre ce chemin. Pour
tout entier naturel n, on déduit de 'encadrement de la partie entiére que

1
VnelN, x—— < u, <x
107

Et la convergence de (u,) e vers x est donc clairement par le théoreme d’encadrement.

4. Le théoreme de Bolzano-Weierstrass

Comme on peut en avoir l'intuition géomé-
m M trique, une suite bornée s’accumule quelque
o «—» part, i.e. admet une suite extraite conver-
gente.

Théoreme 3.14. (Bolzano-Weierstrass)

Une suite bornée d’éléments de IK admet une sous-suite convergente.

On commence par démontrer ce théoréme pour les suites réelles et le cas complexe en sera un corol-
laire. Dans le cas réel, une démonstration de ce théoreme consiste a établir que I'on peut extraire de
toute suite de nombres réels une suite monotone. Cette propriété est connue dans le monde anglo-
saxon sous 'appellation de Rising sun lemma.

LLG ¥ HX6 8
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Lemme 3.15. (Rising sun lemma)

Toute suite de nombres réels admet une suite extraite monotone.

La démonstration requiert la définition d'un pic : on dit que la suite (u;) ,elv présente un pic en un
entier msi Vn e N tel que n > m, on a u,, > u,. Uappellation de ce lemme, au pouvoir si évocateur
que nous n’avons pas résisté a I'adopter dans ce cours en Francais®, vient du fait qu'un soleil situé en
+o00 sur I'axe des abscisses éclairant le graphe d'une suite (u,) ,eN Voit soit un nombre infini de pics,
soit un nombre fini :

A

S’il y a une infinité de pics, alors «la suite extraite Sinon, en partant du terme suivant le dernier pic,
des pics » est décroissante. on construit une extraction croissante de la suite.

5. Les suites de Cauchy

Au dela de la définition, nous disposons d’une poignée de stratégies pour démontrer la convergence
d’une suite (u#,),ev de nombres réels : étudier sa monotonie, essayer de I'encadrer, I'écrire sous la
forme d’'une moyenne arithmétique afin d’appliquer 'un des grands théorémes®. La notion de suite
de Cauchy nous ouvre une quatriéme voie.

Définition 3.16. Suites de Cauchy

Une suite (u#,) e d’éléments de K est dite de Cauchy si

Ve>0,3dngelN,Vn>ng, Vm > ng, |uy — Uyl <€

D’un point de vue intuitif, cette propriété d’accumulation asymptotique des termes de la suite
(un) nev est équivalente a sa convergence.

Théoreme 3.17. (Convergence des suites de Cauchy).

Une suite d’éléments de K converge si et seulement si elle est de Cauchy.

Ce théoreme présente le méme avantage démonstratif que celui de la limite monotone : nul besoin
de conjecturer la limite de la suite pour établir sa convergence. Mais cet avantage est aussi un point
faible, ce critére ne permettant pas d’expliciter la limite de la suite.

Nous n’utiliserons cette notion qu’a une seule reprise dans ce cours d’analyse, au moment de la
construction de l'intégrale.

5. Lorsqu’elle est surnommeée, cette propriété est plutot qualifiée de lemme des Pics dans les ouvrages en Francais.
6. C’est-a-dire les théoremes de la limite monotone, d’encadrement et de Césaro.
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6. Tests

31.®9

Une intersection infinie de voisinage est-elle encore un voisinage ? On pourra considérer les inter-
valles définis par

n n

3.2.®9
Montrer que I'ensemble {r3; r € Q} est dense dans R.

LLG € HX6 10
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7. Solutions

3.1.88 O 3.2.88 O
Ona
M V.= {0} Soit x et y des réels tels que x < y. Comme () est
nelN dense dans IR, il existe r € Q tel que Vx <r <
Cette intersection n’est pas un voisinage de 0 Y7, ie x < r® < y. On en déduit que {r3; r € Q}
alors que tous les V,, le sont. est dense dans R.

LLG € HX6 11
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